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FOREWORD

This document represents the final report to the National Aeronautics and Space
Administration for work performed under Task Order C.4 to Contract NAS 3-23772.
The task work span was from May 1988 to June 1989.

This is a summary report in that all material discussed herein was presented to
NASA program personnel at oral presentations or in the contractually required
monthly reports submitted while the work was in progress.

The author wishes to acknowledge the contributions of the following:

Mike Murphy — Materials & Processes
Section 1.0 Baffle Fabrication Study
Section 3.4 Injector Fabrication Study

Rob Simin — Producibility Engineer
Section 2.0 Channel Machining Study
Section 3.4 Injector Fabrication Study

Karen Niiya — Performance Analyst
Section 3.0 Injector Studies
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L INTRODUCTION
A. BACKGROUND

New technologies for space-based, reusable, throttleable, cryogenic orbit
transfer propulsion are being evaluated under NASA Contract NAS3-23772. The
supporting tasks for the design of a dual-expander cycle engine thrust chamber
design are documented in this report. This supports the NASA-OAST plans for
development of a new Orbit Transfer Vehicle (OTV) to be operational in the late
1990s. Critical to the economical operation of a space based OTV is a new Hy/O»
rocket engine with capabilities superior to available engines. Table I summarizes
the available engine characteristics and those required of a new engine. In total,
these requirements represent a substantial advance in the state-of-the-art technolo-
gies and a considerable challenge to rocket engine designers. In support of this effort
Aerojet TechSystems has selected a unique engine cycle and thrust chamber config-
uration in response to these requirements.

OTV engine studies have identified a dual-propellant expander cycle as
offering advantages over either staged combustion or gas generator cycles. In a con-
ventional expander cycle engine, hydrogen is routed through passages in the com-
bustion chamber wall where it both cools the wall and acquires sufficient thermal
energy to power the turbine drives of pumps for both the hydrogen and oxygen flow
circuits. It is then routed to the injector for combustion. This cycle is fairly simple
and offers good performance potential. Since all propellant is burned in the com-
bustion chamber it does not have the losses of open cycles. The limitations of the
conventional expander cycle engine are related to dependence on only one working
fluid for turbine drive energy. To supply the energy for the high turbopump and
engine chamber pressures required, the hydrogen must exit the regeneratively-
cooled chamber at temperatures near the design limits for the chamber liner.

A marked improvement in engine operating flexibility and high chamber
pressure capability is available if oxygen can be used as a working fluid driving the
turbine on the oxidizer circuit Turbine Pump Assembly (TPA). This reduces the
demands on the hydrogen circuit and allows the TPAs to be designed without inter
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I, A, Background (cont.)

propellant seals or mechanical gear train connections. Operation at high chamber
pressure is enhanced due to the increase in thermal energy available to drive the
turbopumps.

This engine cycle proposed by Aerojet for the OTV engine, illustrated in
Figure 1 is called the dual-propellant expander cycle. This engine cycle is fairly sim-
ple, plumbing is straightforward, and the cycle offers excellent performance poten-
tial. Gasification of both propellents provides a convenient source of tank pressur-
ant and allows gas-gas injector elements to be used. Gas-gas injection is desirable in
that it enables full range throttling with a single injector without resulting in signif-
icant performance or stability degradation.

The purpose of the studies documented in this report was to research the
materials used in the thrust chamber design, the supporting fabrication methods
necessary to complete the design, and the modification of the injector element for
optimium injector/chamber compatibility.

B. BASELINE DESIGN, 7.5K THRUST LEVEL TCA

The 7.5K thrust level TCA was based on the demonstrated design of the
3K thrust level TCA. The primary difference between the two designs is within the
combustion chamber. The 3K chamber contains an oxygen cooled centerbody struc-
ture housing the oxygen TPA encircled by an annular injector. For maintainability,
reliability, and scaleability, the oxygen TPA was removed from within the combus-
tion chamber. To maintain enthalpy gain by the hydrogen without increasing the
chamber length, hydrogen cooled baffles were designed with a segmented injector
pattern.

The baseline chamber for the 7.5K TCA design was a single pass regenera-
tive design to be made from NASA-Z Copper with conventionally milled coolant
channels. A high strength electroformed NiCo alloy forms the channel backside
closeout. The nominal L' (injector face to throat) length is 9.8 inches with a contrac-
tion ratio of 25:1. An oxygen cooled tube bundle nozzle extension is attached at an
area ratio of 28:1. This concept is shown in Figure 2.
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I, B, Baseline Design, 7.5K Thrust Level TCA (cont.)

Sizing of the coolant channels is based on demonstrated fabrication capa-
bility with copper chamber liners. The minimum channel and land widths have
been demonstrated to be 0.01" wide with aspect ratios (depth to width) up to a max-
imum of 10:1 using NASA-Z copper. (Reference 12)

C. SCOPE OF WORK -

The work performed on Task C.4 focused on the identified material
technologies required to complete the preliminary design task for the 7.5K thrust
level TCA. Material selection and fabrication technique demonstration for the
major TCA components were required to be verified prior to the final design of the
TCA. These components include the hydrogen-cooled baffles, regeneratively-cooled
combustion chamber, and injector. This will result in verification of the proposed
fabrication methods for final design of the TCA. By utilizing improved materials
for the TCA the potential for increased chamber cycle life and weight reductions are

obtainable.

Baffles - Construction of the hydrogen cooled baffles takes advantage of
Aerojet's platelet technology. To maximize the enthalpy gain by hydrogen cooling
the baffles, materials with high thermal conductivity properties are required. In
addition, use of high pressure hydrogen necessitates use of increased material
strength. Diffusion bonding of the copper alloys can sometimes result in degrada-
tion of the base material properties due to (1) the presence of a diffusion aid or (2)
the bonding temperatures and resulting effects of alloy element precipitation and
grain growth. Development work on diffusion bonding of ZrCu has as its goal, to
produce a diffusion bonded part with base material properties.

Past work on diffusion bonding of ZrCu has evaluated use of the solid
phase aids: copper, gold, silver, and nickel (Reference 3). Based on preliminary
visual evaluations, use of nickel and silver was pursued. Nickel aided bonds were
theorized to produce parts with tensile strength approaching that of the base
material but with a decrease in thermal conductivity. Silver aided bonds were
theorized to produce parts with thermal conductivity properties approaching that of
the parent material but with a decrease in tensile strength. Hence the design



I, C, Scope of Work (cont.)

philosophy has been to use nickel aid in designs where strength was the driver and

silver in designs where thermal conductivity was the driver.

Improvements in the diffusion bonding process modified the bonding
parameters in an effort to preclude void formation within the joints which is
theorized to reduce the tensile strength properties. These improvements have
eliminated the voids yielding silver aided bond stacks with recently documented
mechanical properties approaching those of the parent material. This has
demonstrated silver aided diffusion bonded ZrCu to be a viable fabrication method
for the hydrogen cooled baffles where both strength and thermal conductivity are
design drivers. In addition, Aerojet's analytical predictions for thermal conductivity
of diffusion bonded parts has been validated with measured properties.

Regeneratively-Cooled Chamber - Design requirements for the regenera-
tively-cooled chamber are based on engine goals of a 100 start, 4 hour service free
operational life. For lower thrust engines, this was achieved by utilization of the

"mini” channel technology to maximize heat input to the hydrogen while mini-
mizing the thermally induced stress in the chamber. At higher thrust levels,

stronger materials are required to realize increased chamber life.

Utilization of GlidCop, pure copper dispersion strengthened by fine
particles of alumina, is being pursued. Analysis of the relationship between the ele-
vated-temperature mechanical-properties of copper alloys and their performance in
test combustion chambers suggests that GlidCop may out perform the current state-
of-the-art, high conductivity copper alloys by a significant margin.

Use of a new material for the combustion chamber relies on demonstra-
tion of the adaptability of the material to the fabrication methods imposed by the
design. Use of GlidCop for the "mini" channel design was validated by establish-
ment of the required machining parameters to successfully reproduce the channel
geometry of the 7.5K TCA throat region.

Injector Element - Increased reliability of the injector can be obtained by

examination of the performance and design issues. The 7.5K TCA injector design is
based on the element used for the 3K injector design. Expansion of the existing data



I, C, Scope of Work (cont.)

base was undertaken for the "I"triplet premix element to improve the thermal envi-
ronment for the chamber and gas-side baffle wall. Examination of the 3K injector by
a post test, flow coefficient (Kw) check verified no anomalies which may have
resulted in the increased heat flux levels noted during hot fire tests.

This element was selected for the OTV engine due to its very high
(approximately 100%) Energy Release Efficiency (ERE) in a very short (<8") chamber
length. The chamber was designed for average heat flux levels of 10 BTU/in "2 sec.
Higher than anticipated heat flux levels were noted during hot fire testing of the 3K
injector. Earlier studies of this element had indicated that the element could be
modified to lower the heat flux levels without seriously compromising the
performance. The purpose of this study was to see if slight modifications to the fuel
flow cross-section of an “I” triplet premix element would enhance the wall
compatibility by providing fuel-rich regions around the periphery of the spray fan.
The results of the splash test and milkmaid tests documented herein prove that this
program was successful. The baffle element and center element modifications both
gave increased fuel-rich regions along with increased mixing efficiencies due to the
more uniform mixture ratios in the spray fan. These element modifications are also
beneficial since the effective flow area (CdA) of the modified elements are within
15% of the baseline element CdA and therefore will receive about the same flow per
element when incorporated into a full scale injector

The modifications documented in this report form the basis for the
design of the new injector where customizing of the element will be undertaken
according to its location to improve the thermal environment for the hydrogen-
cooled chamber and gas-side baffle walls.

Injector Fabrication and Material Selection - Weight reductions are
obtainable through use of higher strength materials. Initially, the 3K injector mani-

folds and face platelets were made from nickel. Nickel is easy to machine and diffu-
sion bonding parameters have been established. Use of higher-strength super-alloys
are of interest. Aerojet has had recent success in diffusion bonding nickel base
superalloys. Selection of materials for the injector manifolds and face platelets is
based on compatibility with the propellants and the ability to join the materials to



I, C, Scope of Work (cont.)

form the injector. A survey was made of the compatible materials for use in a
hydrogen/ oxygen system. Adaptability of these to diffusion bonding of the face
plate material was evaluated. Ability to diffusion bond was based on Aerojet
demonstration in either the same or similar materials. For lighter weight engines,
use of a zirconium copper face plate would best accommodate Inconel 718 oxygen
manifolds and Incoloy 909 hydrogen manifolds. These materials offer the highest
strength to density ratios for compatible materials.

Significant cost savings for fabrication of the injector faceplate was real-
ized by laser cutting of element features. Tolerances equivalent to those achieved by
chemical milling were achieved. Simple, acceptable methods of dross removal were
demonstrated.



1.0 BAFFLE FABRICATION STUDY

1.1 BAFFLE DESIGN

A 7.5K or higher thrust level OTV engine will utilize a hydrogen cooled
baffled injector. The baffles serve a dual purpose by providing a heat transfer surface
for the heating of the hydrogen in addition to ensuring stable injector operation.
Construction of the baffles will utilize Aerojet's platelet technology. To finalize the
design of this component, the mechanical properties of the diffusion bonded struc-
ture need to be documented. Utilization of the diffusion bonded fabrication
technique enables construction of a homogeneous parent material structure with
integral cooling passages. This process is desirable because the mechanical proper-
ties of the diffusion bonded joint theoretically approach those of the parent material,
unlike the degradation of ZrCu caused by traditional fabrication methods of welding

or brazing.

The baffle assemblies are to be fabricated from ZrCu platelets diffusion
bonded together. Each baffle is a separate integral assembly as shown in Figure 1.1-1.
Hydrogen passages are chemically etched in the ZrCu platelets prior to diffusion
bonding. The baffle plates are cooled with hydrogen which flows down one side,
across the radius bottom, and back up the opposite side. The two opposing ends of
the baffles are cooled in a similar manner. Common manifolding in the baffle plate
feeds the inlets to the side and end passages (Figure 1.1-2). Exiting hydrogen is col-
lected in a separate common manifold adjacent to the inlet. External lines are con-
nected to these manifolds for further routing of the fuel.

1.2 TASK OBJECTIVE

The work under this task included documenting the tensile strength and
thermal conductivity of the diffusion bonded stacks. Theoretical values for thermal
conductivity had been determined from the diffusion aid thickness and resulting
alloying of the aid into the parent material. This task was to correlate actual values
with the predicted thermal conductivity properties and documented the resulting
effect on the tensile strength through tensile testing.

Early Aerojet research (Reference 3) had identified use of a nickel aid as a
reliable, reproducible method of achieving a leak free diffusion bonded part. On-

10
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1.2, Task Objective (cont.)

going diffusion bond investigation at Aerojet for the SSME HEX program, has
demonstrated success with a modified diffusion bond process for ZrCu using silver
as a bond aid.

1.3 FABRICATION TECHNIQUES

1.3.1 Diffusion Bonding History

1.3.1.1 Background - Previous Aerojet Studies

Zirconium copper (ZrCu) is normally chosen for combustion
chamber and heat exchanger applications where high heat flux conditions are en-
countered because of its combination of good mechanical properties and high ther-
mal conductivity. Past brazing experience with ZrCu has shown the necessity of
plating the ZrCu surface to prevent formation of zirconium oxide which inhibits
braze alloy wetting. Thus, all diffusion bonding development of ZrCu has utilized
some type of bonding aid to control oxide formation.

The bonding aids themselves may form an oxide film, such as
Ni0 or AG0, but these oxide films are unstable and will disassociate during the
heat-up phase of the bonding cycle. A completely oxidation resistant bonding aid
such as gold, does not appear to offer a measurable advantage over less oxidation
resistant aids as long as no stable zirconium oxides are formed.

Aids used in diffusion bonding fall into two general categories: 1)
liquid phase aids which melt and flow to help break up oxides and bridge small joint
gaps; and 2) solid phase aids which remain solid at bonding temperatures and serve
to isolate the oxidation prone substrata alloying elements from the bonding envi-
ronment.

The selection of a solid state vs a liquid state bonding aid is not a
straight forward decision. A liquid phase may be necessary where perfect intimate

13



1.3, Fabrication Techniques (cont.)

contact cannot be achieved in 100% of the joint, such as in cases where non-
columnar loading configurations prevent adequate pressure On some areas of the
bond. The liquid phase aid can the “bridge” small gaps in the joint, allowing diffu-
sion to proceed. Also, a liquid phase may prove to be more effective in breaking up
a tenaceous oxide film on the substrate. On the other hand, particular care must be
taken to preclude the possibility of the liquid phase from flowing into undesirable
areas, such as small channels, where plugging can occur. The solid state aid will
obviously stay in the desired locations, but must be accompanied by perfect physical
contact between bond faying surfaces in order to achieve a sound bond. As arule,
the solid state bonding aids are preferred unless shown to be unsatisfactory in a
given application because of poor physical joint contact or extremely tenaceous
oxide films between the aid and the substrate.

The selection of a solid vs liquid phase aid will have some affect
on bonding parameters. Typically, lower bonding pressures are desired with liquid
phase aids. Bonding time is most influenced by temperature, not aid composition.
A liquid phase bonding aid does not necessarily dictate a higher bonding tempera-
ture, depending on the specific aid used. For instance, silver will be a liquid phase
aid above 1761°F on stainless steel, but nickel will be a solid state aid well above this
temperature. The choice of bonding aid in this case is not driven by a desired bond-
ing temperature, but rather the requirement of the liquid phase itself.

Diffusion bonding ZrCu using liquid phase bonding aides has
produced parts with relatively good bond quality. However, rejection rates were
noted due to excessive porosity in the bond. Based on less observed random
porosity with solid phase aids, all follow on work targeted the solid phase aids.

An investigation was undertaken in 1987 in support of Aerojet
work for the National Aerospace Plane (NASP) program (Reference 3). This inves-
tigation evaluated the use of solid phase aids to further improve bond quality. The
aids were chosen based on metallurgical compatibility with copper, oxidation resis-
tance (or low oxide thermal stability), and minimal impact on the thermal conduc-
tivity of the copper alloy. The final set of selected diffusion bond aids included cop-
per, silver, and gold.

14



1.3, Fabrication Techniques (cont.)

Copper was considered for both metallurgical and thermal com-
patibility with the ZrCu substrata. Although copper is subject to oxidation, its oxides
have low thermal stability and dissassociates on heating. This enables the copper to

act as an oxygen barrier.

Silver was considered based on its solubility in copper at low
concentrations and at the temperatures experienced during bonding. Since silver is
oxidation resistant, it should provide a good oxidizer barrier for the ZrCu.

Gold was considered for the same reasons as silver and had the
potential for being better metallurgically compatible with copper since gold is
soluable at all concentrations.

With the selection of any of the above aids, the effects of alloying
on the thermal conductivity properties of copper need to be experimentally

quantified.

Bonding temperatures represent the spread of practical tempera-
tures. The upper limit was defined by the lower limit solution heat treatment tem-
perature of ZrCu (1650 deg F). The lower limit was determined empirically from
earlier work (Reference 13) that observed poor diffusion bond quality when bonded
at less than 60% of the melting point of the bonded species. For ZrCu, the melting
point is 1981 deg F defining a lower limit of 1188 deg F for bonding. A midpoint
temperature of 1425 deg F was also evaluated. Bonding pressures were selected
based on anticipated deformation of the ZrCu platelet structure.

1.3.1.2  Metallographic Evaluation of Background Experiments

The results of the diffusion bonding experiments for the NASP
program (Reference 3) were evaluated using visual metallographic techniques. The
experiments utilized 0.020" thick ZrCu (0.015% Zr) sheets. After cleaning and
plating, the sheets were sheared into 2" x 2" coupons. Bonding stacks consisted of
approximately 10 coupons of each diffusion aid. Stop-off coated stainless steel plates
separated the different diffusion aided groups as represented by Figure 1.3.1-1. This

15
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1.3, Fabrication Techniques (cont.)

configuration cancelled out any variables due to nonuniform loading or variance in
furnace parameters. All diffusion aided stacks were subjected to the same load and

the same furnace run.

The coupons were visually evaluated by Scanning Electron
Microscope (SEM). After documentation of the bond joints, each coupon was sub-
jected to bend tests at room temperature. Results of this evaluation follows.

Maintaining parent material properties after diffusion bonding is
desirable. Some degradation in tensile strength is anticipated due to the heat cycle
in the bonding furnace. Some degradation of thermal conductivity is expected with
the use of bonding aids. Preliminary inspection of the data ruled out the 1650 deg F
bonding temperature because of the resulting copper grain growth as shown in
Figures 1.3.1-2 thru -4 for each of the bond aids. Excessive grain growth usually
results in degradation of the tensile strength of the bonded stack.

Evaluation of the bond joints made at the other two temperatures
showed different degrees of diffusion of the aid into the base metal. The variation
in void formation at the joint was evaluated for each of the diffusion aids.

The copper aided bonds in Figures 1.3.1-5 thru - 7 show distinct
bond lines with no grain growth across the joints. This suggests that there may be a
layer of oxide particles at the joint which could have a detrimental affect on bond
strength.

The silver aided bonds are shown in Figures 1.3.1-8 thru - 10. The
extent of silver diffusion into the copper substrata is shown by the less effective etch-
ing adjacent to the bonds. The bonds made at 1200 deg F show a significant amount
of residual silver at the joints. This was felt to possibly be a desirable effect since
minimal diffusion should result in less degradation of the thermal conductivity of
the joint. This reduction in thermal conductivity is assumed since solid solution
alloys have lower conductivities than the pure form of either alloying species. The
degree of diffusion of the bonding aid into the base material is expected to increase

17



Figure 1.3.1-2. Zirconium Copper Diffusion Bonded With Copper Aid at 1650°F
With Low Bonding Loads
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Figure 1.3.1-3. Zirconium Copper Diffusion Bonded With Silver Aid at 1650°F
With Low Bonding Loads
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Figure 1.3.1-4.

K

®
ey
e
i

;i" ot
e &
e f
S :

Y i

]
;i‘#( ::'
wk ok .
Bk s

’_:? oy 53: - .

.

Zirconium Copper Diffusion Bonded With Gold Aid at 1650°F

With Low Bonding Loads

S0 Lt -

Figure 1.3.1-5. Zirconium Copper Diffusion Bonded With Copper Aid at 1200°F

Ok, i

OF POUM

g

FAOE 19
NUALY

With Higher Bonding Loads
19



Figure 1.3.1-6. Zirconium Copper Diffusion Bonded With Copper Aid at 1425°F
With Low Bonding Loads
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1.3.1-7. Zirconium Copper Diffusion Bonded With Copper Aid at 1425°F
With Higher Bonding Loads
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Figure 1.3.1-10. Zirconium Copper Diffusion Bonded With Silver Aid at 1425°F
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1.3, Fabrication Techniques (cont.)

with temperature. The 1425 deg F bonds show this wider silver diffusion zone.
Bond quality appears good even though there is a visible bond line with a few point
defects.

The gold aided bonds are shown in Figures 1.3.1-11 thru - 13. As
in the silver aided bonds, gold diffusion into the copper substrata has improved the
copper's corrosion resistance adjacent to the bonds. The 1200 deg F bond shows
what appears to be an interlayer between copper platelets. This interlayer represents
the gold diffusion layer. Some preferential grain boundary diffusion is noted near
the bonds.

1.3.1.3 Diffusion Bonding Summary of Background Experiments

Bond quality of the specimens discussed in Section 1.3.1.2 was
determined solely by visual metallurgical examination, and therefore remains
subjective. This study was the first step taken to identify viable bonding aid
candidates. Additional work, including that undertaken on the OTV task C.4,
resulted in quantitatively documenting the resulting mechanical properties. This
work, funded under the OTV task, is discussed in Section 1.3.2.

Based on the visual observations of the early work, the
effectiveness of copper as a bonding aid was suspect. Very distinct bond lines,
representing numerous fine defects along a continuous bond line grain boundary,
were observed.

Silver and gold visually appeared to be effective as bonding aids.
No significant bond voids were noted, and the interdiffusion of copper/silver and
copper/gold might yield improved bond strength. However, the concern remained
that the effects of this interdiffusion might degradate the thermal conductivity
properties of the bonded joint.

Silver and gold appear to improve the corrosion/oxidation resis-
tance of copper as was shown by resistance to etching in the diffusion zone of the
bonds. This may be critical in preventing oxidation on the oxygen side of hot

23



Figure 1.3.1-11. Zirconium Copper Diffusion Bonded With Gold Aid at 1200°F
With Higher Bonding Loads
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Figure 1.3.1-12. Zirconium Copper Diffusion Bonded With Gold Aid at 1425°F
With Low Bonding Loads
24



Figure 1.3.1-13. Zirconium Copper Diffusion Bonded With Gold Aid at 1425°F
With Higher Bonding Loads
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1.3, Fabrication Techniques (cont.)

oxygen/hydrogen heat exchangers. Both silver and gold have thermal expansion
coefficients compatible with copper, and both are compatible with hydrogen and

oxygen.

Subsequent bend tests at room temperature lent some validation
to the visual metallurgical examination. The copper plated ZrCu stack delaminated
and separated after bending as shown in Figure 1.3.1-14. After bending, the gold
plated ZrCu stack also showed some signs of delamination (Figure 1.3.1-15). The
stacks using silver as the diffusion aid showed no evidence of separation as shown
in Figure 1.3.1-16.

As follow on work to the diffusion bonding study undertaken by
the NASP program for their heat exchangers (HEX), the SSME program continued
the study of solid phase bonding aids. Taking the best (as demonstrated by metalur-
gical evaluation) solid phase alloy and introducing nickel as a candidate, the diffu-
sion bond study was continued. For the SSME HEX program, additional bonding
studies were undertaken and evaluated by tensile testing. Nickel demonstrated
higher tensile strength than silver over a temperature range from room tempera-
ture (R.T.) to 1000 deg F. In addition, based on the number of specimens and tensile
test results, the nickel results were more repeatable.

As the diffusion bonding study was continued by the OTV pro-
gram, repeating the silver aided bonds was of interest for increased thermal conduc-
tivity. A significant amount of work had been undertaken to refine the bonding
process. Changes to the bonding parameters of temperature, applied pressure, and
time were custom tailored to the stages of the diffusion bond process.

1.32 Mechanical Property Results Form Current Bonding Experiments

As the diffusion bonding study was continued by the OTV pro-
gram, further investigation of ZrCu bonded with silver aids was desired to obtain
the increased thermal conductivity properties without sacrificing the tensile
“strength. Compiling the results of the previous experiments, conducted on the
NASP and the SSME HEX, refinements to the overall diffusion bonding process to
eliminate void formation, were used to define the bond cycle for the preparation of
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Figure 1.3-1-16. Results of Ambient Bend Test on Silver Aided Zirconium Copper
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1.3, Fabrication Techniques (cont.)

the samples for the OTV program. These refinements consisted of modifying the
bonding temperature, applied pressure, and bond time to be specifically tailored for
each individual stage of the overall diffusion bond process. The diffusion bonding
process is considered to take place in two stages outlined below.

1)  The first step provides the temperature and pressure re-
quired for microscopic plastic deformation of the metal to re-
sult in intimate metal-to-metal contact. This overcomes the
surface roughness and flatness of the platelets.

2) The second step provides the time for the diffusion to occur
thus completing the bond and ultimately eliminating the in-
terface.

Addition post bond processing in a Hot Isostatic Pressing (HIP)
furnace assisted the diffusion process by evacuating resultant voids and ensuring
intimate contact without gross deformation of the platelet structure.

1.3.21 Specimen Preparation

The specimens were prepared and diffusion bonded per Aerojet
specifications. A representative bonded stack is shown in Figure 1.3.2-1.

1.3.2.2 Tensile Data

All tensile testing of the materials presented in this section was
performed by MetCut Research Associates Inc. in Cincinnati, Ohio. The material
was machined into tensile specimens (Figure 1.3.2-2). Extensometers were used in
all tests to measure deflections; cross head displacement was simultaneously mea-
sured as a verification.

Since all previous diffusion-bond work with silver as an aid was
subject only to visual examination of the joint, no reference point of comparison is
available for the tensile test results. Visual indication of the presence of voids in the
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Figure 1.3.2-1. Diffusion Bonded Stack of Zirconium Copper
30



uonesnbyuo) uswioads ajisua) z-z'g'L aInbi4

[-01T11L "ON ‘DMQ ﬁ
"aQHL 91-8/¢
6025+ OTHO ‘ILLVNNIONIO HLONST ADVD 290°( *‘VIA 881"
"ONI SALVIDOSSY HOUVASAY LOADLAW NIWIDIIS ATISNEL

200 09272 IIIIL
UD LSF X 2¢/1 j 290" 1— wﬂ]. ~
. , ,
BIP GE1°/STl” ,E. :/ _ \“_ I
ti 1
SO ® D f :\\\ < d Ve ﬁ
. - : /
PUL 91-8/¢ mw-.l.w RN N UL Yy

31




1.3, Fabrication Techniques (cont.)

diffusion zones of the earlier specimens empirically suggests a weakness in this
zone. The objective of the tensile testing on this program is measure the diffusion
bonded parts against the parent metal properties.

Figure 1.3.2-3 plots the tensile strength for the two bonding aids
(Ni and Ag) versus the baseline material ZrCu. Slightly lower tensile strength is
noted at the elevated temperatures of the diffusion bonded samples. This is most
likely due to furnace processing of the diffusion bonded sample.

Nickel is approximately 12% stronger than silver as a diffusion
aid at 1000°F. Photographs document the failure mode of the Ni aided tensile spec-
imens (Figure 1.3.2-4) and the Ag aided tensile specimens (Figure 1.3.2-5).

The data for the Ag plated specimens at 1000°F is suspect due to
the location of the failure. This location is where one of the extensometers was

located and appears in all 3 samples.
1.32.3 Thermal Conductivity Test Results

All thermal conductivity testing of materials presented in this re-
port was performed by Southern Research Institute (SRI) of Birmingham, Alabama.
This data was taken using the comparative rod apparatus (CRA) method detailed in
Appendix A. Specimens used to obtain the ZrCu base metal data came from a single
heat (or batch) of bar material. Thermocouples were located in the specimens as

depicted in Figure 1.3.2-6.

The measured thermal conductivity data for the ZrCu base metal,
and ZrCu bonded with either Ni or Ag, are shown in Tables 1.3.2-1, -II, and -IIL.
Table 1.3.2-IV contains average thermal conductivities obtained from this data, cor-
rected by using the linear curve fit parameters to derive the thermal conductivities
as a function of temperature. A plot of the average data from the three data sets, and
the linear curve fits for each data set, are presented in Figure 1.3.2-7.
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Figure 1.3.2-4. Nickel Aided Tensile Test Specimens
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35

ORINAL pag o

i Pt

BLACK AND v~

o

WTOCRAPH



ORIGINAL PAGLE
BLACK AND WHITE PHOT

{ IRABANY

050" ¢
r 0.25°
X |
0.85°
1.35* 1857
* __
0.50*
% { 1

Figure 1.3.2-6. Comparative Rod Apparatus Specimen Description

36



TABLE 1.3.2-]

THERMAL CONDUCTIVITY DATA FOR ZIRCONIUM COPPER

Test Temp. Conductivity (k) * Average k
49 2267
50 2272 2269.5
177 2414
176 2423 2418.5
185 2418
185 2423 2420.5
401 2386
401 2394 2390
542 2333
542 2338 2335.5
710 2346
710 2345 2345.5
815 2405
817 2408 2406.5
998 2025
997 2021 2023.2

* BTU-in/hr-ft2-iF
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TABLE 1.3.2-T1

THERMAL CONDUCTIVITY DATA FOR NICKEL-AIDED DIFFUSION-BONDED

ZIRCONIUM COPPER

Test Temp. Conductivity (k) * Average k
130 1937
130 1938 1937.5
503 1898
503 1901 1899.5
740 1936
741 1936 . 1936
920 1993
921 1984 1988.5
1260 2007
1257 2007 2007

*+ BTU-in/hr-ft2-F
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TABLE 1.3.2-I11

THERMAL CONDUCTIVITY DATA FOR SILVER-AIDED DIFFUSION-BONDED
ZIRCONIUM COPPER

Test Temp. Conductivity (k) = Average k
102 2508
102 2505 2506.5
434 2406
434 2393 2399.5
818 2437
819 2412 2424.5
1272 2350
1275 2349 2349.5

* BTU-in/hr-ft2-F
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TABLE 1.3.2-1V

AVERAGE ZIRCONIUM COPPER DIFFUSION-BONDEDTHERMAL
CONDUCTIVITIES *

AVERAGE DATA POINTS CORRECTED AVERAGES
(Based on linear curve fit data *%)
Z2r-Cu Zr-Cu Zr-Cu Zr-Cu
Zr-Cu w/Ni w/Ag Zr-Cu w/Ni w/Ag
Temp (F)

50 2269 2412.9 1902.7 2488.9
100 2402.9 1906.6 2483.2
102 2507 2402.5 1906.7 2483.0
130 1938 2396.9 1908.9 2479.8
177 2419 2387.5 1912.6 2474.5
185 2420 2385.9 1913.2 2473.6
200 2382.9 1914.4 2471.9
300 2362.9 1922.1 2460.6
400 2343.0 1929.9 2449.3
401 2390 2342.8 1930.0 2449.2
434 2400 2336.2 1932.5 2445.4
500 2323.0 1937.7 2438.0
503 1900 2322 .4 1937.9 2437.6
542 2335 2314.6 1940.9 2433.2
600 2303.0 1945.4 2426.7
700 2283.0 1953.2 2415.4
710 2346 2281.0 1954.0 2414.2
740 1936 2275.0 1956.3 2410.8
800 22613.1 1961.0 2404.1
816 2406 2259.9 1962.2 2402.2
818 2424 2259.5 1962.4 2402.0
900 2243.1 1968.7 2392.7
920 1989 2239.1 1970.3 2390.5
998 2023 2223.5 1976.3 2381.7

1000 2223.1 1976.5 2381.4
1100 2203.1 1984.3 2370.1
1200 2183.1 1992.0 2358.8
1259 2007 2171.4 1996.6 2352.2
1273 2350 2168.6 1997.7 2350.6

+ BTU-in/hr-ft2-F

+*+ equation parameters

intercept slope
Zr-Cu 2422 -0.19977
w/ Ni 1898 +0.07767
v/ Ag 2494 +0.11308
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The baseline Zr-Cu data agrees with other sources, Reference 2,
in showing a slight decrease in conductivity with increasing
temperature. The Ag aided bond data shows no measurable
difference from the Zr-Cu data. The Ni aided bond data shows
lower conductivity as expected. The effect of the Ni decreases
with increasing temperature, characteristic of Cu-Ni alloy thermal

conductivity data from Reference 3.
Figure 1.3.2-7. Thermal Conductivity of Bonded Zirconium Copper
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1.3, Fabrication Techniques (cont.)

ZrCu Base Metal — Figure 1.3.2-8 shows the thermal conductivity
data from the ZrCu base metal specimen plotted with a design allowable curve taken
from Reference 4. It can be seen that the test data agrees well with previous esti-
mates of the thermal conductivity of ZrCu, validating the CRA method used in
determining thermal conductivity in this alloy system.

It is noted that the 1000°F data point falls significantly below the
fitted line; however since neither OFHC, nor design allowable ZrCu curves show
any suggestion of thermal conductivity drop-off at this temperature range, it is
assumed that this point represents data scatter and does not indicate a major devia-
tion from the fitted curve. Since this data point was obtained at the highest temper-
ature tested, this assumption cannot be verified at this time.

ZrCu w/ Ni Bond Aid — The bulk thermal conductivity (i.e., the
average thermal conductivity of a bonded stack) shows a significant reduction. The
reduction in thermal conductivity, due to Nickel in solution at the bond lines, is

greatest at room temperature and decreases at higher temperatures as shown in
Figure 1.3.2-9. These differences represent an average drop in bulk thermal con-
ductivity of approximately 20% at room temperature (80% of ZrCu), and 11% (89%
of ZrCu) at 1200 °F. This bulk value is applicable only to bonded stacks with similar
thermal cycles and approximately equivalent average platelet thickness. The effect
of the bonds increases as the ratio of bond width to unaffected ZrCu platelet thick-
ness increases, as occurs in stacks with a higher average platelet thickness.

ZrCu w/ Ag Bond Aid — The thermal conductivity of Ag aided
bonds shows no significant difference from the ZrCu base metal at any test tempera-
ture as illustrated in Figure 1.3.2-10. Statistical analysis of the ZrCu and ZrCu w/Ag

data cannot distinguish a difference in mean thermal conductivity, based on a 95%
confidence interval of the means, and a computed t statistic of -1.944 and a signifi-
cance level of 0.064. Small differences are therefore attributed to variations in base-
metal composition/thermal conductivity and variability in measurement repro-

ducibility.
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The baseline Zr-Cu data matches the Reference 4 curve closely except for the
room temperature and 1000°F data points. Since neither any Zr-Cu data,
OFHC Cu data, nor Cu-Ni data shows any suggested deviation from a straight
line in this temperature range, it is assumed that these data points represent
random variation in the measurements.

Figure 1.3.2-8. Zirconium Copper Test Data Versus Design Allowable
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The Ni aided bond data fits a straight line with a slightly posi-
tive slope. The effect of the Ni rich bond zone has a moderate
effect on the bulk thermal conductivity of the stack compared to

the baseline Zr-Cu thermal conductivity.

Figure 1.3.2-9. Thermal Conductivity of Zirconium Copper Versus Zirconium
Copper With Nickel Aid

44



MA-89-115

24 April 1989
THERMAL CONDUCTIVITY
Zr—Cu vs Zr—Cu w/Ag
~ 300000 -
9' 250000 | —aa- 2r—Cu w/Ag
: ————= | =
2 200000 =
e
150000
100000
é 50000
000 T T T

The Ag aided bond data shows a slight deviation above the
typical Zr-Cu thermal conductivity. The addition of silver to
copper should reduce the average thermal conductivity slightly,
therefore this effect is assumed to be due to different lots of
Zr-Cu and slight errors in measuring thermal conductivity in

high conductivity materials.

Figure 1.3.2-10. Thermal Conductivity of Zirconium Copper Versus Zirconium Copper
With Silver Aid

45



1.3, Fabrication Techniques (cont.)
1.32.4 Analytical Predictions for Thermal Conductivity

Ni Aided ZrCu — The strength advantages of using nickel as a
bonding aid have been well demonstrated in the SSME external heat exchanger pro-
gram, however, based on reference thermal conductivity data for simple binary
CuNi compositions, (Reference 5), a significant drop in thermal conductivity can be
expected in the area of the diffusion bonds.

The thermal conductivity of each bond can be calculated by
assuming additive thermal resistivity of the base ZrCu and the ZrCuNi bond diffu-
sion zone. Therefore the bulk thermal resistivity of the stack should be represented

by:

Rpulk = Rzrcu ¥ Rpond (1)

Where Ry 18 the thermal resistivity of the bonded stack
R, culs the thermal resistivity of the ZrCu
Ryond I8 the thermal resistivity of the bonds

Solving for the bond thermal resistivity yields:

1.3, Fabrication Techniques (cont.)
Rpond = Roulk ~ Rzr-cu ()

Since thermal resistivity is inversely related to thermal conductivity by:
R=L/k (3)

where L is the effective gage length of a material with a thermal conductivity of k.

The thermal resistivity equation can then be re-written in terms

of thermal conductivity as:
Lbond/kbond = Lcomb/kbulk - Lzr-cu/kzr-cu (4)

or solving for ky, . 4

kbond = Lbond/(Lcomb/kbulk - Lzr-cu/kzr-cu) (5)

46



1.3, Fabrication Techniques (cont.)

where

kbond = the bond zone thermal conductivity
kbulk = the measured bonded stack thermal conductivity

kzr-cu = the baseline ZrCu thermal conductivity

and

Lbond = the measured average bond width

Lcomb = the average platelet thickness (ignoring the thickness of the applied
bonding aid)

Lzr-cu = the thickness of the unaffected ZrCu (IE average platelet thickness
minus the bond zone width).

The stacking sequence of the Ni aided bonded specimen is a repe-
tition of 2 each 0.008, 4 each 0.010, 4 each 0.012,' and 4 each 0.017" platelets, which
results in an average platelet thickness (Lcomb) of .172"/14 = 0.0123". Scanning
electron microprobe analysis of several typical Ni aided bonds in the specimen indi-
cates the average Ni aided bond width (Lbond) to be 0.0023" thick. The correspond-
ing unaffected ZrCu length (Lzr-cu) is then 0.0123" - 0.0023" = 0.010".

The baseline ZrCu thermal conductivity (kzr-cu) is 2410 Btu-
in./hr-ft2-°F at room temperature, 2343 at 400°F, 2263 at 800°F, and 2183 at 1200°F,
and the bulk Ni aided ZrCu thermal conductivity (kbulk) is 1904 Btu-in./hr-ft2-°F at
room temperature, 1930 at 400°F, 1961 at 800°F, and 1992 at 1200°F, from the data in
Table 1.3.2-1V.

Substituting the appropriate gage lengths and measured thermal
properties for both the baseline ZrCu and Ni aided bonds at select temperatures
(from the data in Table 1.3.2-IV) into this thermal conductivity equation yields:
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1.3, Fabrication Techniques (cont.)

Kpond = 995 Btu-in./hr-ft2-°F at room temperature

kb ond = 1093 Btu-in./hr-ft2-°F at 400°F

kb ond = 1241 Btu-in./hr-ft2-°F at 800°F

and

kb ond = 1443 Btu-in./hr-ft2-°F at 1200°F

Verification of these calculations is difficult since there is no lit-
erature data available regarding the effects of nickel on the thermal conductivity of
Zr-Cu. Existing data on the thermal conductivity of nickel/copper solutions in
Reference 5 can be used, however, if the simplifying assumption is made that the
zirconium in the alloy (0.10 to 0.20%) has a negligible effect on the alloy’s conduc-
tivity. It now becomes feasible to convert the calculated bondline thermal conduc-
tivity to estimated nickel concentration using the appropriate data from Reference 5,
and comparing these results with actual measurements of the nickel content of the
bonds. If the above assumption is true, there should be a good correlation between
derived and measured nickel contents at all test temperatures.

Figure 1.3.2-11 is a plot of the effects of test temperature on the
thermal conductivity of various CuNi concentrations of interest. As expected,
nickel content has a major effect of decreasing thermal conductivity. Note that all
CuNi curves have positive slopes, as compared to the slightly negative slope of pure
copper, and that the dilute Ni concentration curves show the greatest effect of tem-
perature (largest slopes), while a high Ni concentration (20%) shows a relative
insensitivity to temperature. As a result, the difference in conductivity between
pure copper and the copper/ nickel solutions, particularly dilute (<10% nickel con-
centrations) is not a constant, but rather decreases with increasing temperature.

Figure 1.3.2-12 presents the data shown in Figure 1.3.2-11, rear-
ranged to show thermal conductivity of copper as a function of Ni concentration for
various test temperatures. This allows an easier correlation between thermal con-
ductivity and Ni content. The four calculated bondline thermal conductivities of
995, 1093, 1241, and 1443 BTU-in/hr-ft2-°F vs room temperature, 400°, 800°, and
1200°F respectively, are plotted in Figures 1.3.2-11 and 1.3.2-12. Figure 1.3.2-11 shows
the expected reduction in thermal conductivity, however, the slope of thermal
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Nickel has a very strong negative effect on the thermal conductivity of copper. Dilute
Ni solutions (<5%) show a relative improvement in conductivity at elevated
temperatures. High Ni concentrations show less of an improvement with increasing
temperature (Reference 5). The dashed line represents calculated bond line thermal

conductivity.

Figure 1.3.2-11. Effect of Temperature on Copper Conductivity as a Function of

Nickel Content
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Rearranging the curves from Figure 1.3.2-11 allows thermal conductivity to be
determined for a given Ni content. The values of the four calculated bond-line
thermal conductivities at four temperatures are represented by the dashed lines
above. Note that for the same physical specimen, this data would indicate the Ni
concentraton increasing with temperature. Since the same specimen was used to
measure thermal conductivity at various temperatures, this would indicate the
presence of some other factor with a stronger influence at high temperatures.

Figure 1.3.2-12. Etfect of Nickel on Copper Conductivity
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1.3, Fabrication Techniques (cont.)

conductivity vs temperature appears equivalent to the 20% Ni curve. Figure 1.3.2-12
shows that the apparent Ni content of the bonds increases from 3.6% at room tem-
perature to approximately 8% at 1200°F. This is an obvious discrepancy since all
bond stack thermal conductivity measurements were made on the same sample.
Since the nickel content of the bonds must be constant, two hypotheses could
explain the discrepancy, either the average Ni content is 20% and some factor is
increasing the thermal conductivity uniformly at all temperatures, or the average
Ni content is closer to 3.5% and some other factor is acting synergistically with the
Ni at elevated temperatures to further degrade thermal conductivity.

Microprobe analysis of six typical bond lines from Ni aided spec-
imens shows a maximum residual Ni content at the center of the bond of approxi-
mately 6.8%. Assuming a linear concentration gradient from the bond centerline to
the edge of the diffusion zone results in a calculated average Ni content in the bond
zone of 3.4%, therefore, it would appear that some other factor besides Ni is degrad-
ing the thermal conductivity of the bonded stack at-elevated temperatures. The
most likely factor is the effect of zirconium, originally assumed to be negligible.

The thermal conductivity curve for pure copper shown in Figure
1.3.2-11 is almost identical to the measured curve for ZrCu shown Figure 1.3.2-8, at
least up to 800°F and for this reason zirconium was assumed to have a negligible
effect on conductivity. However, since the ZrCu thermal conductivity was only
measured up to 1000°F, and since the 1000°F data point fell well below the antici-
pated curve, it is not unreasonable to assume that the thermal conductivity of ZrCu
diverges from pure copper at approximately 1000°F due to significant solution of zir-
conium starting in this temperature range. This effect may be further increased by
the effects of nickel in solution. Phase diagrams, Figure 1.3.2-13, show greater solu-
bility for zirconium in nickel than in copper, suggesting that the CuNi alloys may
have higher solubility of zirconium than pure copper, and therefore should show
more pronounced effects on conductivity at elevated temperatures.

If the assumption that the Cu-Ni bond zone has higher zir-
conium solubility than pure copper is correct, the effect would be greater in the
bonded stack than in the normal ZrCu with no Ni. Using the test data to correct the
curves at high temperature results in Figure 1.3.2-14. This curve also converts
thermal conductivity into % ZrCu conductivity for simplified application to subse-
quent calculations of Ni aided bond thermal conductivities.
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Rearranging the curves in Figure 1.3.2-12 to correct the effects of increased Zr
solubility in the Ni rich bond zone results in a downward shift in bond thermal
conductivities at temperatures above room temperature. The data has been
plotted as % of baseline Zr-Cu thermal conductivity to simplify bond and bulk
thermal conductivity calculations per equations (7) and (10).

Figure 1.3.2-14. Effect of Nickel on Zirconium Copper Conductivity Corrected
for Zirconium Solubility in Bond
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1.3, Fabrication Techniques (cont.)

The above calculations are specifically applicable to Ni aided
bonds with the same average platelet thickness, and which have been exposed to
thermal cycles resulting in equivalent Ni concentration diffusion gradients to those
measured in these bonds. The thermal conductivities of bonds made under differ-
ent conditions will have significantly different bulk thermal conductivities. These
alternate bond condition thermal properties may be estimated by measuring the
actual Ni content and diffusion zone width using the SEM/EDX microprobe, deter-
mining the average platelet thickness in the stack in question, and using the appro-
priate thermal conductivity estimated from the curves in Figure 1.3.2-14.

Referring to the additive thermal resistivity equation:

Rpulk = Rzr-cu * Rbond (1)

Converting this equation to equivalent thermal conductivity terms using equation
(3), and solving for kpylk:

1<bulk = Lcomb/ ((Lzrcu/ kzr-cu)+(Lbond/ kbond) ) (6)

Since the corrected Ni vs thermal conductivity curve in Figure 1.3.2-14 is plotted as
% ZrCu, kbond = kzr-cu * %ZrCu. Therefore, performing the kzrcu substitution and

rearranging (6):

k C1/%ZrCu)) (7)

/(L L

kpulk = ¥zrcu " Leom zrcw’ ' ~bon

In order to estimate the bulk thermal conductivity of a new Ni
aided bonded stack it will be necessary to know:

1.  %ZrCu, the ratio of kbond /kzrcu taken from Figure 1.3.2-14
for the measured average bond Ni concentration.

2.  Lcomb, the average platelet thickness of the stack.

3.  Lbond, the measured bond width.
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1.3, Fabrication Techniques (cont.)

4. Lzrcu = Lcomb - Lbond-

5. kzrcu, design allowable thermal conductivity @ tempera-

ture.

For example, if a bonded stack resulted in a bond zone .001" wide,
with an average Ni content of 10%, and an average platelet thickness of .008", the
equation parameters would be:

%ZrCu = .25
Lecomb = -008"
Lbond =.001"

Lzrcu = .008 - .001 =.007

Kzrcu = 2410 Btu-in.-hr-ft2-°F) at room temperature

Therefore, the bulk thermal conductivity should be:

kbulk = 2410 * .008/(.007+(.001/.25) = 2410 * .72= 1752 Btu-in./hr-ft2-°F

at room temperature

The situation for heat flow parallel to the bond lines is somewhat
different. This situation is analogous to an electrical circuit with parallel resistors.
In this case, bulk thermal conductivity additive, not thermal resistivity. The bulk

thermal conductivity is determined by:
kbulk=kbond*(Lbond/Lcomb)+kzrcu*(Lzrcu/Lcomb) (8)

The specimen used to determine the bulk transverse thermal
conductivity in would be expected to have a bulk conductivity parallel to the bonds

of:
kbulk = 995*(.0023/.0123) + 2410*(.010/.0123)

= 2145 Btu-in./hr-ft2-°F at room temperature
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1.3, Fabrication Techniques (cont.)

The above assumptions and calculations are reasonable for the
CuNi system which is a simple, single phase, 100% solid solution system, Figure
1.3.2-15. Similar calculations and conclusions could be drawn from any such metal-
lurgical system, however, more complex systems containing intermetallics or eutec-
tic phases may be much more complicated.

Ag Aided ZrCu Diffusion - The relatively large affect of Ni of the
thermal conductivity of ZrCu lead to the consideration of silver as a bonding aid.
Early bond test data showed very good room temperature strength with silver as a
bonding aid, however no high temperature tensile data has been generated to date.

The thermal conductivity data shows no measurable affect of sil-
ver on the thermal conductivity properties of ZrCu. This result is not unexpected,
based on metallurgical phase diagram data available for AgCu, Figure 1.3.2-16,
Reference 5. Silver and copper form a simple eutectic which consists of two distinct
phases, one copper rich and the other silver rich. Ata typical ZrCu aging
temperature of 1100 F the copper rich phase contains approximately 3% silver, and
the silver rich phase contains approximately 4% copper. Therefore in a Ag aided
ZrCu bond stack, three distinct composition zones are present, pure ZrCu, Cu-2%Ag,
and Ag-6%Cu. Figure 1.3.2-17 shows the effect of both Ni and Ag on Cu
conductivity at room temperature. The anticipated Cu-3%Ag conductivity based on
this data would be within 5% of ZrCu, and Ag-4%Cu would be approximately equal
to ZrCu because of the higher conductivity of Ag.

Scanning electron microscope (SEM) examination shows a silver
rich phase at the bond line which is 75 p-inches wide. This indicates that the origi-
nal silver plating thickness was at the high end of the specified thickness range (20-
40 p-in per surface). SEM microprobe data, show the total diffusion zone of Ag into
the ZrCu matrix is approximately 50 p-inches on either side of the Ag rich phase.
Therefore, in a 0.020" platelet, the Ag rich phase represents 75 p-in (or .04% of the
platelet thickness), the Cu rich phase represents 50 g-in (.03% of the thickness), and
the ZrCu base metal represents 200000 p-in (99.93%).
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The Cu-Ni phase diagram from Reference 3 show that these two
elements form a simple single phase solid solution system at the

temperature associated with bonding and post-bond heat treat-

ing.

Figure 1.3.2-15. Phase Diagram Showing Single Phase Solid Solution of
Copper and Nickel
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The Cu-Ag phase diagram from Reference 3 shows the limited
extent of Cu and Ag solubility at the Zr-Cu aging temperature
of 1100°F (593°C).

Figure 1.3.2-16. Phase Diagram Showing Limited Solubility of Copper and Silver
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Solid solution alloying generally has a detrimental effect on the
thermal conductivity of a pure metal. The effect of Ag on Cu
conductivity is moderate at any temperature, because of the
limited solid solubility of Ag in Cu, and Cu in Ag, and the high
conductivities of the individual elements. Ni, however, shows a
much stronger effect, accentuated by the éomplete solubility of
Cu and Ni, and by the much poorer conductivity of Ni.

Figure 1.3.2-17. Silver and Nickel Effects on Copper Conductivity
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1.3, Fabrication Techniques (cont.)

As in the case of 100% solid solution systems, the transverse bond
thermal conductivity of a stack can be determined by adding the thermal resistivities
of the base-metal and the bond. The only significant difference from the CuNi sys-
tem is in the average solute content of the bond diffusion zone. In the CuNi system,
there is a continuous Ni gradient. In the CuAg system, the diffusion zone has two
distinct regions, the high Cu and high Ag phases. It is most accurate to assume two
bond zones for each joint in the CuAg stack when calculating its thermal conductiv-
ity. Therefore, the bulk thermal resistivity of an Ag aided stack could be calculated

by:

Rpulk = Rbond 1 + Rbond 2 + Rzrcu 9)
or
kbulk = Lecomb / (L1/k1 + L2/k2 + Lzrcu/kzrcu) (10)
where
Lcomb = the average platelet thickness
L1 = width of the Ag rich bond phase
k] = the thermal conductivity of the Ag rich phase
Lo = width of the Cu rich bond phase
ko = the thermal conductivity of the Cu rich phase
Lzrcu = width of the unaffected ZrCu

kzrcu = the thermal conductivity of the unaffected ZrCu

1.3.3 Baffle Fabrication Conclusions

Utilization of the diffusion bonding process is a viable method to
obtain required geometries within a homogeneous parent material structure.
Recent progress with various solid-state diffusion aids are providing mechanical
properties approaching that of the parent material. Silver is the diffusion aid of
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1.3, Fabrication Techniques (cont.)

choice for the regeneratively cooled baffle structures. Use of silver as a bonding aid
for ZrCu has no measurable effect on the bulk thermal conductivity of the ZrCu due
to the high thermal conductivity of the dilute AgCu and CuAg solutions. Tensile
strength, although showing a slight degradation, is sufficient for structural integrity
of the part. Further modifications to the bonding parameters can continue to
enhance the strength characteristics of the silver-aided diffusion-bonded ZrCu.

Nickel is the bonding aid currently in use for diffusion bonding of
ZrCu components. Use of nickel reduces the bulk thermal conductivity of a bonded
ZrCu stack. The extent of the reduction is dependent on the specific bonding pa-
rameters and the average platelet thickness of the stack. The bonding parameters
used for this study resulted in thermal conductivities of 80% of the base-line proper-
ties at room temperature and 89% of the base-line at 1200 deg F. The thermal con-
ductivity of nickel aided bonds does show improvement at elevated temperatures,
however, not as much as would be expected solely by the alloying effects of Cu and
Ni on thermal conductivity.
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2.0 CHANNEL MACHINING STUDY

2.1 MATERIAL SELECTION

Copper alloys that have been evaluated for use as liners in regeneratively
cooled combustion chambers include: OFHC Copper, GlidCop (Cu-0.15A12), ZrCu
(Cu-0.15 Zr), NARloy-Z, and NASA-Z (both Cu-3Ag-0.4Zr). Copper is desirable due
to its high thermal conductivity. Copper alloys bring increased strength with
slightly lower thermal conductivities. As chamber operating pressure differential
become higher, use of higher strength alloys is necessary.

Design of chamber liners has used low-cycle-fatigue data for estimating the
life of the chamber. Recent Aerojet in-house studies (Ref. 7) suggest that chamber
liner performance should not be limited exclusively to strain controlled low-cycle-
fatigue data, but should also factor in the dependency upon creep-rupture strength.
These analyses indicate that an alumina dispersion strengthened copper alloy
(GlidCop) liner would provide a longer life chamber than those utilizing NASA-Z
or ZrCu copper alloys.

Dispersion strengthened (DS) copper alloys offer a unique combination of
high strength and and thermal conductivity properties. The strengthening results
from a uniform dispersion of fine aluminum oxide (Al,O3) particles in a pure cop-
per matrix. The AlyOj3 particles act as barriers to the movement of dislocations.
They are stable at elevated temperatures, and help retain much of the room temper-
ature strength of DS copper at or after exposure to such temperatures.

The most effective strengthening is achieved when both the Al,O3 particle
size and the spacing between the particles are small. Various methods are available,
and have been used in the past for making DS copper. These methods include:
mechanical mixing, co-precipitation, melting of nitrates, and internal oxidation. Of
these methods, the best dispersion has been obtained by the internal oxidation pro-
cess, and it is the only commercial process in use today to make DS copper
(Reference 8). Figure 2.1-1 illustrates the manufacturing process for the present day
GlidCop alloy.
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Figure 2.1-1. Manufacture of Dispersion Strengthened Copper
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2.1, Material Selection (cont.)

Although the copper alloy, GlidCop, was dismissed in earlier evaluations
(Ref. 9), the recent processing changes have resulted in superior mechanical proper-
ties. Table 2.1-I lists the properties of the various GlidCop alloys compared to OFHC
copper. For this study, the Al-15 was selected. Table 2.1-1I lists the compositions of
the various GlidCop alloys.

Changing the material used for the combustion chamber is dependent on
demonstration of the adaptability of the new alloy to the design features of the
chamber. Utilization of copper alloys does have a foundation in the use of copper
for the basic fabrication processes. However, various constituents in each alloy may
cause a slight modification of the fabrication process to provide quality hardware.

Figure 2.1-2 depicts the typical construction of a regeneratively cooled
combustion chamber wall. Cooling channels are milled into a nozzle shaped liner.
Selection of a new chamber material must first offer demonstration of its machine-
ability and establish the recommended machining parameters. Next, the backside of
the coolant channels in the liner is closed by depositing a pressure containing shell
over the entire liner. A good bond between the liner and closeout material must be
demonstrated to contain high pressure coolant. Chemical compatibility between the
propellants and combustion products are required of the selected liner and closeout

materials.

The machining studies documented in this report are a continuation of an
earlier IR&D program (Reference 12) which investigated machining a long-life
channel geometry utilizing state-of-the-art copper alloys NASA-Z and ZrCu.

In support of this IR&D task, analytical work indicated that achieving
higher performance within a reduced-size space transportation system required
operation at higher chamber pressures. Operation of these engines at higher cham-
ber pressures provides a more difficult task for engine cooling due to the higher
heat fluxes encountered. An additional complexity is also encountered at low-
thrust-throttled conditions where the amount of propellant available for active
cooling is very small relative to the total heat load.
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TABLE 2.1-1

PHYSICAL PROPERTIES OF DS COPPER AND OF COPPER

Property C15715 C15760 OF Copper

Melting Point:

oC. 1083 1083 1083
Density:

at 20°C., Mg/m3 8.84 8.81 8.94
Electrical Resistivity:

at20%C. p Qe m 186 221 171
Electrical Conductivity:

at 20°C., Megmho/m 54 45 58

% IACS 92 78 101
Thermal Conductivity:

at 20°C., Watt/meter o PK 365 322 391
Coefficient of Thermal Expansion:

(20-1000°C.), p m/m/°C. 16.6 16.6 17.7
Modulus of Elasticity:

at 20°C., GPa 125 125 115

TABLE 2.1-11

CHEMICAL COMPOSITIONS OF DS COPPER GRADES

Grade Designation Copper Aluminum Oxide
CDA Manufacturer Wt. % Vol. % Wt. % Yol. %
C15715 AL-15 99.7 99.3 3 i
C15720 AL-20 99.6 99.1 4 .9
AL-25 99.5 98.8 .5 1.2
C15760 AL-60 98.9 97.3 1.1 2.7
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CHANNEL SLOTTING CHEM VAPOR DEPOSITION
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CHEMICAL
COMPATABILITY
TESTS BONDING

EXPERIMENTS

Figure 2.1-2. Typical Construction and Development of a Regeneratively Cooled
Combustion Chamber
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2.1, Material Selection (cont.)

Computer model analyses were undertaken which indicated that the
primary consideration in optimizing the channel configuration for the long-life
engines was to minimize channel width. This enabled full advantage of the coolant
surface area provided by the land and external wall. In this manner a large heat flux
transformation was accomplished. The added fin effect produced by using smaller
channels was aided by the increase of coolant heat transfer coefficients on the land
and external wall. Because hydrogen heat transfer coefficients increase as the wall
temperature decreases, the resulting channel sizes are reduced. Reduction of the gas
side wall temperatures gave an added bonus of longer cycle life due to the reduced
thermally induced strain. These tradeoffs for the 7.5K thrust level TCA are pre-
sented in Figure 2.1-3.

Optimization of the material properties for GlidCop has not been com-
pleted for the final TCA analysis. Additional stress analysis to factor in the creep-
rupture strength (Figure 2.1-4) gained by using the GlidCop alloy remains. It is
important to first address the fabricability of this dispersion hardened alloy and to
obtain the strengths of both electro formed (E.F.) closeouts and welded joints prior to
finalization of the design and its supporting analysis.

22 CHAMBER DESIGN

The 7.5K thrust level regeneratively-cooled chamber profile is shown in
Figure 2.2-1. A summary of the channel dimensions is depicted in Table 2.2-1.
Several factors increase the difficulty of machining the chamber channels and need
to be addressed prior to fabrication of the GlidCop chamber liner. These include:

1) HIGH ASPECT RATIO (CHANNEL DEPTH/WIDTH = 10:1):
Channels are deep, varying from a 0.400" depth at the converging sec-
tion of the barrel to a 0.083" depth at the throat.

*  Higher aspect ratios increase the tendency for channels adjacent
to the cutter to "lay-over" during machining. Tendency for
channel lay-over is inhibited somewhat by the strengthening
effects of the contour curvature.
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TABLE 2.2-1

SUMMARY - 7.5K TCA REGENERATIVE-COOLED CHAMBER COOLANT-
CHANNEL GEOMETRY

POSITION ON
CHAMBER

AT INJECTOR
FACE

END OF BAFFLES

MID CONVERGING
SECTION

THROAT

AREA RATIO 2
AREA RATIO 4
AREA RATIO 8
AREA RATIO 17

HYDROGEN INLET
MANIFOLD

A/AT

25.32

25.32
12.20

1.0
2.01
4.03
8.06

16.90
28.0

DEPTH (IN)

0.105

0.400
0.287

0.083
0.190
0.300
0.300
0.300
0.300
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WIDTH (IN)

0.065

0.062
0.029

0.010
0.019
0.030
0.030
0.030
0.030

LAND (IN)

0.040

0.040
0.040

0.011
0.011
0.013
0.030
0.056
0.080

WALL (IN)

0.060

0.0582
0.0337

0.0200
0.0380
0.0600
0.0600
0.0600
0.0600



2.2, Chamber Design (cont.)

2)

3)

4)

e Deep cuts induce higher blade stress because of the need to use
larger blade diameters offset with less arbor support.

LENGTH OF CUT: The 7.5K thrust level OTV chamber has an
approximate 16.27" total profile length over which to maintain tight
tolerances. The most critical "mini" channels in the throat area cover
a profile length of approximately 3.8".

»  Longer cuts tend to increase blade wear and the risk of blade fail-
ure or breakage.

e  Chamber is at greater risk due to friction generated heat of dull-
blade cutting. Possibility increases for distortion of channels and
possible cracking, chipping, or breakage of cutters.

HIGH CONTRACTION RATIO (CR =25): Contour narrows sharply at
the throat, converging and diverging angles equal to 40 degrees.

e  May require cutter blade size reduction in the narrow throat
region. Supporting arbor diameter is further reduced to achieve
deeper cuts.

e  Thinnest channels must be machined where blade stability will
be difficult to maintain.

THIN WALL: Gas-side wall thickness varies from a 0.060" maximum
at the chamber barrel and nozzle to a 0.020" minimum at the throat.

¢ Reduces chamber strength. Chamber can deflect from tool pres-
sure during;:

*  Machining of the channels, if I.D. machined first. Use of cham-
ber ID mandril for support of chamber required.

e  Boring of chamber ID, if O.D. and channels are machined first.
Use of some type of OD support necessary.
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2.0, Channel Machining Study (cont.)
23 FABRICATION STUDY

The overall objective for this subtask was to demonstrate the ability to
repeat fabrication of the "mini"-channel technology in GlidCop. This targeted the
first two items of concern, the aspect ratio of the channel and the length of cut. Prior
to fabrication of the chamber, the ability to maneuver the cutting tool through the
high contraction-ratio throat and the ability to maintain the thin gas-side wall
thickness would need to be demonstrated in a contoured billet. However, the basic
cutting parameters needed to be established first.

The ability to fabricate channel and land widths to tolerances of approxi-
mately 0.001 inch was verified by measurements made with a toolmaker's micro-
scope. Two groups of channels were made in 1.9 inch diameter barstock. The first
group replicated the channels of the 3.0K thrust level engine throat geometry and
the second group demonstrated the channels for the 7.5K thrust level chamber
throat geometry. These dimensions are summarized in Table 2.3-1.

In support of the fabrication study, a 2.0 inch diameter bar stock of GlidCop
Al-15 was ordered from SCM Metal Products in Cleveland, Ohio. The part number
assigned by SCM is AL15RAA and that assigned by Aerojet is 1203258. Recommen-
dations from SCM on the machining of GlidCop indicated that due to its higher
strehgth, it should machine more like a steel than a copper. Within the test plan,
the initial conditions were reviewed from the ZrCu machining studies and used as
input to the machinist for the cutting of the shallow 0.038" cuts. Modifications to
these parameters where then used to make the deeper 0.083" cuts. Because the
machining of the mini-channels is unique, no reference data for machining similar
channels in steel is available for comparison.

The test plan is presented in Table 2.3-II and accompanied by the illustra-
tions in Figure 2.3-1. The desired tolerance to be held on channel and land dimen-
sions was +/- 0.002".

The first step of the test plan (Table 2.3-1I) was directed at preparation of
the bar stock. Reasons for this are twofold. First, the processing method for GlidCop
yields a thin (less than 0.030" radial) skin of OFHC on the surface. For these studies,
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TABLE 2.3-1

3.0K TCA Chamber @ Throat

7.5K TCA Chamber @ Throat

Entrance angle
Exit angle
Channel Width
Channel Depth
Land Width
Gas Side Wall
Throat Diameter

Step Transition
Barrel & Nozzle
Channel Width
Channel Depth
Land Width
Gas Side Wall

Channel Width
Channel Depth
Land Width
Gas Side Wall

40 degrees
15 degrees
0.010 inches
0.038 inches
0.011 inches
0.020 inches
0.96 inches

= 0.020 inches
= 0.100 inches

40 desgrees
15 degrees
0.010 inches
0.083 inches
0.011 inches
0.020 inches
1.500 inches

Gradual Transition
Barrel (-2.41 inch)
0.025 inches
0.250 inches
0.040 inches

0.0310 inches
Nozzle (2.41 inch)
0.030 inches
0.300 inches
0.039 inches
0.060 inches
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1)

2)

3)

4)

1y
2)

3)

TABLE 2.3-I1

TEST PLAN
Clean up 2" diameter GlipCop bar stock to
1.9” diameter.

Duplicate geometry of 3.0K design without
transition step

Repeat Step #2 to a increased depth of
0.083".

Demonstrate smooth transition from throat
geometry to barrel geometry.

Inspection Requirements
Surface finish
Land deformation

Tolerance, actual held (desired *+ .002"”)
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‘ Remove Cu Coating
Clean up 0.D.

a)

s ™ 2\t
L

.010 Wide
011 x .083 Deep

a) Cut 12 Channels

b) Compare Cutting
Charactristics to
those of Zr Cu

o 1
O ' .010 Wide
x .083 Deep
a) Cut 12 Channels
.025 Wide .030 Wide
x .25 Deep x .3 Deep
d)

l .010 Wide

x .083 Deep

a) Cut 6 Channels

Figure 2.3-1. GlidCop Machining Study Test Plan
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2.3, FabricationStudy (cont.)

this OFHC copper layer was removed. Secondly, it was desired to have the OD of the
barstock equal to the OD dimension of the 7.5K throat diameter (Figure 2.3-1a).

Identification of the variables involved in the understanding of the
machineability of the GlidCop alloy include: spindle speed, cutter feed rate, lubrica-
tion system, feed direction, cutting tool deflection, rake angle/number of teeth, and

material hardness.

1) Spindle speed: The speed was optimized for efficiency of time and
quality of cut. Speed was varied from 210 to 325 RPM (55-85 SFPM) for the 0.038"
deep cut with a 1" diameter high speed steel cutter and from 325 to 83 RPM (233 - 58
SFPM) for the 0.083" deep cuts with a maximum cutter diameter of 2.75 " high speed
steel. This indicated a sharp drop off in speed rate for the increased depth of cut
with increased cutter diameter. Earlier work with the ZrCu tried speed in the range
of 250 to 335 RPM (65 - 87 SFPM) with better success at the lower rate of 250 RPM.
The ZrCu studies were accomplished with a 1" diameter, high speed cutter.

2) Cutter feed rate: Initially, a 0.375 fpm feed rate was evaluated which
was rapidly increased to 0.85 to 1.5 fpm for the 0.038" deep channels. A slightly
slower rate of 0.75 was judged best for the deeper (0.083") cuts. The earlier work with
ZrCu evaluated feed rates of 0.6 to 2.4 ipm (equivalent to 0.05 to 0.2 fpm).

3) Several lubrication and coolant techniques were evaluated. The first
used kerosine and proved very difficult to keep the cutting blade clean. Next, brush-
ing oil onto the channels was evaluated. This too failed to adequately clear the chips
and keep the cutter clean. The most successful was the use of a mixture of oil and
water, commonly referred to as "Spray Mist", directed onto the channel using a 40

psi air source.

4) Two types of peripheral milling were considered as options for slotting:
conventional versus climb cutting (see Figure 2.3-2). Both cutting methods were
attempted, however conventional cutting produced considerable cutter wobble caus-
ing the channel dimensions to fall outside desired tolerances. Climb cutting pro-
duced less cutter wobble and gave good results that were within the desired toler-

ances.
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Direction of Cutter
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Figure 2.3-2. Conventional Versus Climb Milling
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2.3, FabricationStudy (cont.)

5) Cutting tool deflection: In an effort to minimize the deflection of the
cutter due to the force of cutting the channel, an arbor was made to support the cut-
ter. The arbor served to stabilize the blade resulting in more accurate machining
and also reduced the cutter tool bending stress. The depth of the channel to be cut
established the length of exposed blade on the cutter. This tooling is shown in
Figure 2.3-3.

6) Number of teeth/Cutter diameter: For the shallow 0.038" deep cuts, a
1" diameter cutter with 90 teeth was used. For the deeper 0.083" cuts, a 2.75" diame-
ter cutter was used with 70 teeth. This trend is opposite what was observed with the
ZrCu studies in which a 1" diameter cutter with 30 to 24 teeth was preferred.

7) Material hardness: The Brinell hardness was measured at an average
of 109. This is in the expected range for the heavily cold worked structure of the
Glidcop. This compares to a Brinell hardness of 60 for the softer ZrCu used in
earlier studies.

Configuration of the cutter tool was also evaluated. A blade was ground to
form a hollow-ground blade and used as a cutting comparison with the straight
blade. These configurations are illustrated in Figure 2.3-4. The hollow ground blade
was found to make sharper cuts and was used in subsequent machining studies.

The methodology utilized in approaching cutting of the channels is doc-
umented by Table 2.3-IIL

23.1 Inspection Results

Figure 2.3-5 shows the bar stock at the completion of the machining
studies. Cross sections were taken at the locations noted. Closeup photographs of
the channels are presented in Figure 2.3-6 and 2.3-7. After mounting of the sections,
photographs and measurements were taken of the channels. Since the channels
were machined with varying parameters (Figure 2.3-8), the last two (#11 & 12 and
#23 & 24) channels from each group were inspected with a toolmaker's microscope
(or Measurescope). This data is presented in Table 2.3-IV for the 0.038" deep chan-
nels and Table 2.3-V for the 0.083" deep channels. Expected tolerances of +/- 0.002"
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a) Hollow Ground N Cutter Support
(l D
b) Straight Sided Cutter AN Cutter Support 2.4.0.50

Figure 2.3-4. Cutter Configurations
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Figure 2.3-8. Cross-Section of 0.083” Deep Channels
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TABLE 2.3-1V

GLIDCOP MACHINING STUDIES
0.038” DEEP CHANNELS

Shallow Channels - GlidCop

#1 #2 #3
A 0106 A 0103 A .0103
B .0101 B .0102 B .0101
C .0118 C .0120 C .0123
D .0110 D .0114 D 0117
E .0370 E .0375 E .0373

N

\ma \am\e
ini l
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TABLE 2.3-V

GLIDCOP MACHINING STUDY

0.083” Deep Channels

#1 #2 #3
A .0102 A .0102 A .0099
B .0100 B .0097 B .0105
C .0120 C 0127 C 0122
D .0100 D .0110 D .0105
E .0840 E .0850 E .0855
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2.3, FabricationStudy (cont.)

were maintained. Key-stoning effects on the land dimensions due to the deep
channels are within the allowable tolerance band as illustrated in Figure 2.3-9.

Channel wall roughness was measured at an average of 63 micro
inches. This is slightly rougher than the 24 to 42 micro inches recorded at comple-
tion of the earlier studies with ZrCu.

2.3.2 Transition of Channels

With the mini channels through the throat area, the channel goes
through a transition in cross-sectional area as it moves up into the barrel section.
Figure 2.3-10 outlines two approaches to this widening of the channel. The first is a
step transition in which the cutter is changed to a thicker blade to cut a wider path.
As the two cutter paths (W1 and W2) come together, a step is formed in the flow
stream. The 3K thrust level chamber utilized this step machining method with the
regeneratively cooled throat section shown in Figure 2.3-11. This is simple to
machine, however, a large pressure drop is experienced due to the abrupt transition.

With the higher thrust level engines, a method to blend the chan-
nel transitions is desirable. Though this can be achieved with the same cutters used
to generate the channels, it would be a time consuming and costly process.
Alternate methods of achieving this blend were explored as part of this channe] fab-
rication subtask.

One method would be to use different thickness cutters to machine
channels of width W1 and W2. An EDM (Electron Discharge Machining) electrode
would be made to burn off the edges from the resulting step. Although it is not cost
effective to EDM the entire channel, EDMing the transition portion would not be
cost prohibited.

A second method explored was the use of a "fly cutter". The chan-
nel transition achieved with this special cutter is shown in Figure 2.3-12. The cutter
used in this step is shown in Figure 2.3-13. To use this cutter, the initial channel
geometry would be cut into the chamber resulting in a step transition between the
two channel widths. The fly cutter would then be used in the transition section to
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N=233 Channels
W1=0.0117"
W2=0.0106"

A =0.001"

Figure 2.3-9. “Key-Stone” Effect on Channel is Within Channel Tolerance
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Step Machining

L D1 D2 #
a) W1 W2 #
/
l
Top View Side View
Biended Machining
\ t
D2
b) Wi Wa ¢ D1 t
— 2.4.052
/
Top View Side View

Figure 2.3-10. Channel Transition Methods
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2.3, FabricationStudy (cont.)

again remove the sharp edges. Cross sections of the channel are shown in Figure
2.3-14 where (a) shows the initial introduction of the fly cutter into the mini chan-
nel and (b) is taken at the point of the maximum desired channel width.

Of the two proposed methods to more smoothly define the channel
transitions, only the fly cutter was demonstrated. Technology for the EDM cutting is
available. To compare the methods, flow testing would be needed to evaluate the
resulting pressure drops due to restriction and surface roughness.

24 CHAMBER FABRICATION CONCLUSIONS

Initial findings of machining GlidCop indicate that it should be treated
more like a steel than a copper. This along with the cleanliness of the cut, indicate
flexibility in machining the high aspect (depth to width) ratio, mini channel geome-
try for the OTV engine chamber.

This subtask has completed the first phase of material evaluation for
regeneratively cooled chambers. Follow on work is needed to complete verification
of GlidCop for use in combustion chambers. This work would be part of the final
design effort toward a TCA design and would include verification of the:

1)  Ability to weld.

2)  Ability to structurally adhere an electroformed nickel, or nickel alloy
closeout.

3)  Ability to machine the contoured "mini" channels.

Samples of both welded GlidCop and electroformed nickel closeouts to
GlidCop could readily be obtained as part of a final TCA design task. Tensile speci-
mens of these joints would establish the acceptable design limit properties.

Since mini channels have already been successfully machined to a 6"
length on a cylindrical GlidCop specimen, contoured mini channel machineability
is best verified with a full-scale, 7.5K thrust level model. Actual chamber geometry
will directly address several potential channel-machining problems and will
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2.4, Chamber Fabrication Conclusions (cont.)

include the effects of curvature on channel fabrication. Also, since the 7.5K chamber
has the smallest throat radius and throat curvature, successful results for the 7.5K
thrust level model would imply channel machineability at higher thrust levels. A
contoured chamber sample using the dimensions in Figure 2.2-1 should verify the
ability to machine contoured mini channels in the GlidCop alloy.
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3.0 INJECTOR STUDIES

3.1 INJECTOR DESIGN

The injector design is based on the 'T' triplet premix element, tested as part
of the 3K thrust level program (Reference 1). This injector consisted of 2 annular
rows of elements, each containing 36 elements, arranged around the center body
structure as shown in Figure 3.1-1. The elements were canted at a 20 degree angle as
shown in Figure 3.1-2 . Thrust rating per element for the 3K injector was 45 Ibf for
cach of the 36 elements in the outer row and 38 Ibf for each of the 36 elements in the
inner row. Baseline element design for the 7.5K thrust level engine injector utilized
the geometry of the 3K outer row elements. As the OTV dual propellant expander
cycle engine is scaled up in thrust level, the centerbody structure is replaced with a
baffle assembly. The hydrogen cooled baffles provide additional surface area for heat
input to the propellant thereby minimizing the regenerative hydrogen cooled
chamber length. The 7.5K thrust level injector was designed using a 8 blade baffle
geometry, dividing the injector into 8 pie shaped segments containing 168 elements
as shown in Figure 3.1-3.

The injector element pattern is contained in a stack of Nickel platelets
which are diffusion bonded to the manifold. Figure 3.1-4 illustrates the element
design. The fuel passages impinge sideways on the oxidizer stream into a cup area
for mixing of the fuel and oxygen prior to injection into the chamber for combus-

tion.

Utilization of platelets for formation of the injector element allows easy
customization of each element. Geometries for the 3K thrust level injector were dif-
ferent for the inner and outer row elements. Likewise, for the baffled injector
designs, customization of the elements according to the location (i.e. at the wall ver-
sus at the center of the pie segment) is easily incorporated.

Results from the 3.0K thrust level TCA testing (Reference 1) were used to
finalize the design of the injector element at the 7.5K thrust level. Higher than
expected heat flux levels within 0.5 inches of the injector face indicated changes
needed to be made to the element to "detune” its performance to provide nominal
heat flux levels of 10 BTU/sec in.2 in the barrel section.
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3.1, Injector Design (cont.)

For the OTV engine design requirements, the gas-gas 'I' triplet premix
element had been chosen to satisfy the high Isp requirements, provide the capability
to operate over a wide throttling range (10:1), and enable adequate combustion gas
mixing in a relatively short (<10") chamber length.

Verification of the injector and regenerative channel design was achieved
with hot fire testing of a heat-sink version of the chamber with only the throat sec-
tion using hydrogen cooling. During this testing, heat flux information was
obtained to characterize the axial profile in the chamber. This information indicated
higher than designed heat fluxes occurring within a 1/2 inch axial length from the
injector face at the wall of the center body. The fluxes rapidly leveled off after this
initial 1/2 inch length to values closely approximating the design goals This can be
expected with the 'T' triplet element as shown in Figure 3.1-5. The heat flux associ-
ated with the data band are shown tabulated in Figure 3.1-5.

Two approaches were feasible for application of this study to the 7.5K
thrust level TCA injector design: 1) Retesting of the existing 3.0K injector with new
face plates, or 2) cold flow uni-element testing.

Earlier work at Aerojet had characterized this injector element and
defined areas which would increase or decrease the mixing efficiency (References 10
and 11). This characterization of the T t.riplet injector element showed a wide toler-
ance range to mixing efficiency variances. At a mixture ratio of 6, mixing efficien-
cies can be experienced as low as 90% without seriously comprising the element
Energy Release Efficiency (ERE) as illustrated in Figure 3.1-6.

To study reorientation or detuning of the injector element, Table 3.1-I lists
the approaches and compares the relevant information obtainable. With this
information it would have been possible to take a "best guess" approach to design-
ing a new face plate for the existing 3.0K thrust level injector. However, due to the
differing geometry between the flat plate baffles of the 7.5K design and the annular
configuration of the 3.0K design, extrapolation of the heat flux information would
have been difficult.
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Energy Release (Combustion) Efficiency, ERE - %

80 Lo ! | ] ! | J
40 50 60 70 80 90 100
Mixing Efficiency, Em-%

Figure 3.1-6. Empirical Relationship Between Combustion Efficiency and
Mixing Efficiency for Pre-Mix Injector Equipment
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3.1, Injector Design (cont.)

The benefit of cold flow testing is the ease in which many element geome-
try changes can be studied in a short time at a minimum cost. However, to fully
evaluate the element changes and the resulting changes in heat flux level, hot fire
testing at the 2000 PC level would need to be repeated. For the purposes of this
study, the uni-element cold flow testing was selected as the most cost effective
method of understanding the element.

3.2 POST-HOT FIRE TEST COLD FLOW VERIFICATION

Prior to modifying the 3.0K element geometry for use in the 7.5K injector
design, post hot fire cold flow testing of the injector was undertaken to rule out the
possibility of flow anomalies which may have caused the high heat fluxes experi-
enced in the hot fire testing. The 3.0K injector is shown in Figure 3.2-1.

Figure 3.2-2 illustrates the approach taken for the cold flow
characterization (Kw) check of the injector. Gaseous Nitrogen was used to flow the
hydrogen and oxygen circuits separately. Table 3.2-1 lists the dates, Injector
condition, and reason for cold flow test. A summary of the corresponding GN2 cold
flow effective cold flow area (CdA) results for each of these dates is tabulated in
Table 3.2-I1. The first set of cold flow tests on 4/3/85 were conducted prior to a
modification to the injector which increased hydrogen face film cooling around the
centerbody. This primarily affected the hydrogen CdA of the inner row since the
additional face cooling was fed from the inner row manifold. Figure 3.2-3 presents
the effective flow area for each element after the first post-test cold flow. Post-test
cold flow before and after the back-flushing showed consistent CdA values. A
maximum variance of 5% was observed which is acceptable for gas flow.

Element-by-element mixture ratios based on the cold flow CdA's are
shown in Figure 3.2-4 and Figure 3.2-5. The slight shift in MR between the 1985 data
and the 1988 data is attributed to the increased hydrogen face film cooling to the
injector added after the 4/3/85 cold flow. The variances observed in Figures 3.2-4
and 3.2-5 are in an acceptable range for the injector. Supply pressure for the 1985
cold flow was 15.7 psia and that for the 1988 cold flow was 30 psia.
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Figure 3.2-2. 3.0K TCA Injector Cold Flow Test Logic
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TABLE 3.2-1
3K OTV INJECTOR GN; COLD FLOW HISTORY

Date Reason

4/3/85 Pre-fire injector Kw determination (before injector
modification)

9/28/88 Post-test cold flow check for possible element
mixture ratio bias

10/24/88 Injector backflush to remove possible contaminants

11/4/88 Injector resistance check after backflush
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TABLE 3.2-11

SUMMARY OF GNj; COLD FLOW TEST RESULTS

4/3/85Cold Flow 9/28/88 Cold Flow 11/4/88 Cold Flow

Fuel Inner Row

CDhA 0.0561 0.0672 0.0666
Fuel Outer Row

CDA 0.0704 0.0857 0.0846
Ox Inner Row CDA 0.0691 0.0690 0.0695
Ox Outer Row CDA 0.0898 0.0778 0.0774
Fuel Injector CDA 0.1265* 0.1529 0.1512
Ox Injector CDA 0.1589 0.1467 0.1469

*H face film cooling was increased from 6% to 9.5% after measuring of the CpA
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Figure 3.2-3. Element by Element Effective Flow area From 9/88 gN2 Cold Flow

112



9¢

eisd 2°G| JO ainssaid }3ju| 10} uonnNquisi oljed aiMXIN ad-3ld v-T°€ ainbi4

JaquinpN Juawajlz

ve 43 e 82 9 124 44 oz 8L 9l 148 (42 ot 8 9

F N

moy 1ainQ ofjey ainix| ubyseg

(1ay) Hod 13611ub|

¥°S

F9°S

{l818A0

moy 1auuj

09

'Z°9

v9

99

F0°L

oljey aJnixi

113



saxn|4 jeay ybiy
40§ JuN02JY 0} WiojluN 00 uonnNqulSIq OlleYy aINixiW 8414-1S0d °G-2'¢ ainbi4

J3qWINpN juswa|3z

9t 12 143 11 8e 9z 124 44 14 8i 18 142 43 ol 8 9 14 4

(jad) wod 1a31ub)

Moy 13)nQ

ooy aJnyx|n ubisag

0’s

"C’S

F¥'S

- 9°S

F8°S

c T ~
e {[BIBAQ BAp03}}3 €
- MOY Jauu|

—

09

F¢'9

L pg

[9°9

1789

ofiey aJmxin

114



3.0, Injector Studies (cont.)
3.3 ELEMENT DESIGN MODIFICATIONS

Since no anomalies were observed in the cold flow injector Kw check,
modification of the injector element was initiated. Figure 3.3-1 is an illustration of a
segment from the 7.5K thrust level injector design. The zones targeted for cus-
tomization of the element geometry are marked. Those elements in the center
(Zone 4) will remain the same as the 3.0K injector outer row element, and will be
referred to as the "Baseline Element". Zones 2 and 3, along the baffle walls, are
grouped together since mirroring about the segment center line is the primary dif-
ference. This group is referred to as the "Baffle Element". The elements in Zones 1
and 5 are referred to as "Center Elements.

The element geometry was designed by evaluating the fuel and oxidizer
normalized momentums. Geometry of the oxidizer element was held constant for
all element modifications. Figure 3.3-2 shows the momentum per unit length for
the baseline 3K element.

A schematic of the flow through a premix "I" triplet element was shown
previously in Figure 3.1-4. A schematic of the C-C and D-D sections for the baseline
element is shown in Figure 3.3-3 along with the proposed modifications to these sec-
tions. Both sides of the baseline element sections show a narrow flow region in the
middle of the platelet stack which is designed to break up the ox stream. The wider
upper and lower flow regions are required to wrap around the ox stream to give a
fuel rich periphery. The baffle and center element modifications are designed to
create a resultant fuel momentum so that there is a more predominantly fuel rich
region near the side of the spray fan nearest the chamber wall or baffle. The platelets
used in this cold flow study are twice the size of the 3K OTV platelets, and therefore
give four times the flow area. These larger platelets produce a larger and easier to
visualize spray distribution.

The actual platelet geometries generated are shown in Figures 3.3-4 & -5
for the Baseline Element, Figures 3.3-6 thru -8 for the Center Element Modifications,
and Figures 3.3-9 & -10 for the Baffle Element Modifications. In each of these fig-
ures, the stacking sequence is given followed by a comparison of the modified
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No. Qty
-1 1
-11 2
-12 2
-11 1
-6 4
Left Side
Mod| a b C
B | .154 |.078 |[.154
C | .154 | .078 [1615
D {.1615|.078 |.1615
E |.1615.078 |[.154

Figure 3.3-6. Stacking Sequence — Center Element Modification

C D E
No. Qty No. Qty No Qty
-1 1 11 -1 1
-11 2 -6 2 -16 2
-12 2 12 2 -12 2
-16 1 -16 1 -11 1
-6 4 -6 4 -6 4
Cross Section Fuel Circuit*
Section C-C Section D-D
Mod| a b c
F | .230 |.116 |.230
| |ab —1 b G |.230 |.116 |.230
H |.230 |.116 |.230
[ | 230 | .116 |.230

|
Cc I I (o] I

(Nearest Baffle Corner)
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3.3, Element Design Modifications (cont.)

platelet to the baseline design. Accompanying tables, presented within Figures 3.3-4
thru -10, summarize the corresponding changes in cross sectional flow area for the
left and right sides of each fuel circuit.

3.3.1 Uni-Element Cold Flow Test Fixture

Cold flow testing was used to evaluate the element modifications.
The uni-element test fixture, shown in Figure 3.3-11, routes fuel & oxidizer simu-
lants to a loose platelet stack that is bolted together. Use of this fixture allows an
assortment of geometry changes with a minimum number of platelets. This flow
fixture has been used in other uni-element studies at Aerojet to study injector spray
mass distributions. To accommodate the element design for this task, new fuel
platelets and an oxidizer post were fabricated. Laser cutting of platelets was investi-
gated as a cost saving alternative to chemically milling the element patterns.
Results of this fabrication method are discussed in Section 3.4.

3.32 Splash Test Setup

Initial splash tests were used as a quick check of the element
"footprint” for the different stacking sequences. A schematic of the test stand for the
splash tests is shown in Figure 3.3- 12. The actual test stand and data collection cen-
ter are shown in Figures 3.3-13 & -14, respectively. Photographs of the splash test
spray fans are contained in Appendix B. Results of the spray fan data are discussed
as they pertain and support the MMRD (or Milkmaid) tests.

Based on the footprint data achieved with the splash tests, subse-
quent cold flow testing using the "Milkmaid" test stand provided information on
the mass flow patterns. Expected pattern variations are presented in Figure 3.3-15.

3.3.2.1 Splash Test Results

The splash tests were run with water as the oxidizer simulant and
GN3 as the fuel simulant. Ambient temperature GNj was chosen to simulate the
GHj,. Water was chosen for the oxidizer simulant so that one of the flow circuit

spray patterns could be visually recorded.

126



Oxidizer
Iniet Line \

Bolt Holes
(6)

Oxidizer Dome \

Gasket

Oxidizer Post
Insert

Stacking
Pins

Fue! inlet Body

1/2” Line
N\

Q

Loose
Platelets

Platelet
Retainer

Figure 3.3-11. Uni-Element Test Fixture
127



Addng NS
Bisd 0o0€

onewayos mojd I1saL yselds zi-g'¢ ainbid oo

sdq /p1L AUDORAZND
23S/Wq| G000 - 0 :B1BIMOI4IND

LINJUBA OIUOS €4
09S/WQq| G0- 0 “02H 4
S13}8WMO|H
xO -eisd 052 - 0 “02H id
jend - e1sd 0GE - 0 ZND 2d
slaonpsuel | 2inssald
4 69p 001 -0 sa|dnooouiiay L rARNNE
sydeibojoyd piolejod abuey pInid adA)  uoneubiseq

sapddns Buio i

128

Alddng z2NO e ,,,..,.

Bisd 0091-0




e

Figure 3.3-13. Uni-Element Test Stand
129

ORiGINE! B

BLACK AND WHITE Fri0TOGRAPH



19}uaD UOND3||0D Bleq 1S3 L BWRIF-IUN "pL-€'E 24nbid

oy
=

A

)

A

ORIGINAL P
BLACK AND WHITE FHOTOGRAPH

130



e LYY
NN

Ox Fuel
wail OGN
a
ANANANAN

Center Element And f\
Wall Element \/

Ox Fuel
Baffle Baffle —
Baffle Element j B
Ox Fuel 24049

Figure 3.3-15. Predicted Milkmaid Mass Flow Patterns for
Fuel and Oxidizer Elements

131



3.3, Element Design Modifications (cont.)

Each element configuration was tested at four momentum ratios,
defined as (wox/wf) * (Vox/Vf). Table 3.3-1 summarizes the collected text data. The
water flowrates were corrected from the flowmeter reading using a flowmeter cali-
bration curve obtained before the start of the splash tests because of oxygen flow
meter inaccuracy at the lowest flow rates. The water flowrates for the low momen-
tum ratio tests of each configuration were calculated using an average element CdA
of the three higher momentum ratio tests. The water circuit element effective flow
area (CdA) in square inches is obtained by calculation of the pressure drop in circuit:

2
DP = L pVv
2 & substituting the relationship of
w
V=—

PA  into the equation provides an effective area relationship as a
function of flowrate and pressure drop of
w
CpA =——
D™ "YDP* sg.

where: w = flowrate in Ibm/sec
sg = specific gravity

Dp = injector pressure drop
V = water velocity
P = density (Ibm/ft3)

The water velocity in feet per second (fps) was obtained from the mass continuity
equation:

w - pVA where CdA was used for the area resulting:

V= w/p*CdA
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Date: 3/31/83

ile: Suefic
i n
To; 75
(Fy {F)
'Test
ABAS) 83.0 444
ABASS 7.4 471.2
ABASS 5.8 46.0
ABAST 69.6 53.1
BCEN1 65.1 54.6
BCEN3 66.4 55.0
63.5 53.3
BCENT 63.9 55.1
CCENL 63.6 52.4
CCEN3 60.9 53.0
CCEXS 60.2 52.4
CCEN7 60.8 52.6
DCEN1 61.7 53.2
DCEN3 61.7 53.2
JCENS 61.5 53.2
DCENT 60.0 53.9
SCENY 60.2 53.5
BCEN3 61.8 53.8
ECENS 61.9 54.4
ECENT7 62.7 54.5
FRAFL 68.1 55.5
FBAF3 63.0 54.7
FBARS 64.3 54.8
FBAFT 68.0 56.0
GBAR1 66.3 55.9
GBAF3 67.9 56.2
GBARS .1 546
GBART 69.4 53.2
HBARL 70.0 §1.3
HBAR3 70,5 50.7
HBAFS 70.1 54.1
HBAR? 72.3 54.1
{BAFL 99.5 43.8
[BAF3 33.0 42.0
[BARS 8.3 4.3
[BAFT7 52.7 43.5

TABLE 3.3-1

UNI-ELEMENT TESTING FILE SUMMARY

iin1-Elenent Testing Spiash Test Sumpary

4 P P2 B M ux Fuei Dy fuel Homen

Tovr Tivi Poj PBfj  Povi Dfvi  wWdot Wdot Vel iel  Ratis

(Ft tpsiaiipsia)ipsia!ipsia) (meas] |meas) (ft/sec;(ft/sec)
{ibm/sec}{lbm/sec)

38.4 104.3 142.3 105.2 564.8  0.4057 0.038] 115.3 1112.30 1.10 2.
40.8 156.9 131.2 189.6 514.8  0.5137 0.0346 145.3 1122.49 1.9
37.5 204.4 118.7 206.0 464.4  0.5815 0.0313 167.8 1121.16 2.83 0
9.2 212.8 91.2 216.3 400.3  0.6212 0.0278 177.7 1129.01 3.52

95.4 101.9 125.8 103.8 564.4  0.4009 0.0375 113.8 1130.61 1.06

0 54.5185.5 115.9 158.0 515.3 0.5142 0.0342 144.6 1131.04 1.3 0.
35.4°206.1 105.1 210.4 464.7  0.5930 0.0310 168.6 1131.38 2.85 0.§

52.5227.0 93.3 231.5 414.2 0.8207 0.0274 177.5 1131.15 3.55

45.4°102.9 126.4 104.6 563.8  0.4029 0.0378 114.4 1128.17 1.08
1.9 154.9 118.9 158.2 516.4  0.5119 0.0343 144.3 1128.84 1.9]
30.3 202.1 107.3 206.4 465.0  0.5859 0.0309 166.3 1126.19 2.80
49.1 226.4 95.9 230.9 415.0 0.6208 0.0275 177.3 1128.42 3.54

33.9102.2 128.1 103.8 564.6  0.4009 0.0375 113.§ 1129.12 1.08
32.7 157.6 120.2 161.0 514.8  0.5163 0.0342 145.6 1129.10 1.95
51.6 203.3 109.0 207.7 465.0  0.5877 0.0309  167.3 1129.04 2.82
50.3 212.8 82.9 217.3 400.5 0.6219 0.0277 1777 1129.88 3.53

34.4102.3 125.5 103.9 565.2  0.4011 0.0376 114.0 1129.44 1.08
53.0 156.0 118.8 159.3 515.6  0.5134 0.0342 144.8 1129.68 1.9
32.1 205.5 107.9 210.0 464.9  0.5933 0.0308  168.3 1130.36 2.85
30.9 232.5 95.7 237.0 411.9  0.6262 0.0273 179.8 1130.49 3.65

3.4 102.2 105.3 103.8 566.6  0.3997 0.0377 113.9 1131.59 |
93.9 156.8 98.0 159.8 515.4 0.5138 0.0342 145.2 1130.67 1
52.1199.3 B89.6 203.8 466.1 0.5805 0.0309 165.8 1130.87 2.75
47.9 231.0 §9.0 235.3 414.6  0.6240 0.0275 179.2 1132.17 3

ST.1102.1 134.4 103.6 564.7  0.4004 0.0374 113.9 1132.04 1.08
59.9 155.6 124.4 156.6 514.3  0.5123 0.0341 144.6 1132.41 1.9
47.0 199.8 114.9 203.9 465.6  0.5824 0.0310  165.8 1130.56 2.75
43.4.252.2 103.0 236.6 415.1  0.6272 0.0277 179.7 1129.05 3.60
4.0 102.9 144.8 103.7 564.4  0.4018 0.0379 114.4 1126.96 1.0
41.7 135.3 133.0 158.3 515.5 0.5103 0.0346 144.5 1126.30 1.3
5.6 202.6 120.2 206.7 465.1 0.5863 0.0311  167.0 1130.05 2.7
43.9 225.8 107.3 230.5 414.9  0.6183 0.0277 177.0 1130.06 3.5

37.0 14 7105.8 564.5 0.4065 0.0382 115.7 1116.44 1.10
32.9 197 5 160.0 515.4  0.5138 0.0349 145.5 1116.66 1.2
34.8 201.2 120.4 205.0 465.4  0.5865 0.0314 166.4 1119.27 2.78
31.8 231.7 108.1 235.7 415.1 0.6261 0.0280 179.5 1118.38 3.59
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3.3, Element Design Modifications (cont.)

The GNj flowrate was found from the sonic orifice calibration
chart. The fuel element CdA is calculated using the sonic compressible flow
equation listed below:

w

CdA=
(Pin* v ([@y/RTI*2/v+ DAly+1/7-1)

and the GN gas velocity was found with the gas sonic velocity equation listed

below:,

V = /(y*g*R*T/MW

where w = fuel flow rate (Ibm/sec)
Cd = empirical discharge coefficient
A .= injection flow area (in.2)
g = 32.17 (ft Ibm/1bf sec?)
R = 1545 ft Ibf/lbm deg R
MW = molecular weight
T = temperature (deg R)
Y = ratio of specific heats
Pin = inlet pressure (psia)

Each splash test was recorded by Polaroid photographs and 35mm
photographs from 4 views: two side views 90 deg apart, and the two corresponding
top views (also 90 deg apart). The pictures (Appendix B) show that the spray fan
produced by the pre-mix impingement of the fuel on the oxidizer is similar to a

conventional triplet pattern.

Measurement of the water (oxidizer circuit) spray fan cone angles
from the Polaroid photographs showed a distinct relationship with momentum
ratio and element type. The spray cone half angles appeared to decrease in groups in
the following order: baseline, baffle elements, and center elements, as shown in
Figure 3.3-16. The decrease in spray cone angle with increased momentum ratio
occurs due to an increased vertical oxidizer momentum combined with a reduced
sidewise fuel momentum. This relationship diminished progressively from the
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Figure 3.3-16. Effect of Momentum Ratio on Spray Cone Angle
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3.3, Element Design Modifications (cont.)

baseline element to the center element, which appeared to not have a distinct rela-
tionship between cone angle and momentum ratio. This effect may be due to the
efficiency of the modified fuel element in surrounding the oxidizer stream as
opposed to breaking up the oxidizer stream, as is the case for the baseline element.

The baffle and center element geometries were designed so that all
the fuel elements when incorporated into an injector would receive equal flow.
This required each of the baffle and center elements to have overall fuel CdA's
equal to the baseline element CdA. The water and GN2 CdA's from the splash tests
are plotted versus momentum ratio in Figure 3.3-17. The water circuit shows a very
consistent CdA of 0.0081 +/- 0.001, which was expected since no modification was
made to the oxidizer circuit. Figure 3.3-17 shows that increasing momentum ratio
has a negligible effect on CdA when both circuits are flowed together. As shown in
Figure 3.3-18 the fuel circuits of the modified elements are all within 15% of the
baseline fuel CdA except for the F modification of the Baffle Element (FBAF)
configuration. The anomalous data for FBAF is attributed to either a leak caused by
under torquing the platelet stack onto the cold flow assembly, or malfunction of one

of the pressure measuring devices.

333 Selected Element Configurations for the Mass & Mixture Ratio
Distribution (MMRD) Tests

One element configuration from each of the baseline, baffle, and
center element configurations was selected for testing on the Mass and Mixture
Ratio Distribution (MMRD) or “Milkmaid” test apparatus. The baseline element
was tested as a basis of comparison for the modified elements. The selection of the
H modification of the Baffle element (HBAF) and the E modification of the center

" element (ECEN) used in the milkmaid tests was based solely on the appearance of

the spray fan in the Polaroid pictures.

The shape of the spray fans for both the H modification to the baffle
element (HBAF) and the E modification to the Center element (ECEN) appeared to
be most "different” from the baseline element spray fan. Cross-sections of the

selected elements are presented in Figure 3.3-19.
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3.3, Element Design Modifications (cont.)
3.33.1 MMRD Test Results

A schematic of the milkmaid set-up is shown in Figure 3.3-20.
The actual milkmaid assembly is shown in Figure 3.3-21 and a closeup of the flow
fixture above the collection grid is shown in Figure 3.3-22.

Table 3.3-I summarizes the test data obtained from the three
milkmaid tests. The run durations were approximately 26 seconds, and the stock
sugar concentration for the fuel circuit was approximately 30% by weight. The
milkmaid collection plate was located 5.75 inches from the platelet face, and the
element orientation relative to the collection grid is shown in Figure 3.3-23. In this
orientation, the smaller cross sectional flow area was on the left of the oxidizer cir-
cuit and the larger cross sectional flow area was to the right.

3.3, Element Design Modifications (cont.)

Reduction of the test data from the Milkmaid tests utilized the
methodology presented in Figure 3.3-24. Computer program listings for Sugar and
FD0073 are presented in Appendix C. Program FD0073 was used to generate the
mass and mixture ratio contours for the tests, as shown in Figures 3.3-25 and -26.
All the mass contour plots have the same contour levels for ease in comparison.
All flowrates were normalized to the actual collected total oxidizer and fuel
flowrates since the collection efficiency of the milkmaid apparatus is never quite
100%.

The oxidizer mass contours in Figure 3.3-25 show only a slight
response to the changes in the fuel momentum. The oxidizer mass contours have a
large central ox-rich core area, represented by the large open area in the center of the
oxidizer contour maps. This high oxidizer concentration in the center of the spray
fan was also visually evident in the splash tests.

The fuel mass contours in this same figure, however, showed a
distinct difference when going from the baseline to the baffle and to the center mod-
ifications. The center element configuration showed the most significant change
with a large fuel-rich region near the bottom right side of the collection plate. The
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Figure 3.3-21. Milkmaid Test Facility for Injector Cold Flow Tests
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3.3, Element Design Modifications (cont.)

baffle element showed a similar fuel-rich region, but not to the extent shown by the

center element.

The mixture ratio contour plots in Figure 3.3-26 show the base-
line element has a very oxidizer rich core, but the center element on the other hand

has a much more benign central core.

Figures 3.3-27 and -28 give topographical views of the previous
two figures, and act mainly as a visualization aid.

The reduced data from the FD0073 computer program for the
milkmaid tests is summarized in Table 3.3-III. The oxidizer and fuel flowrates
shown in this table are in pounds of simulant per second, not pounds of propellant,
which accounts for the extremely low injected mixture ratio. The OTV operating
mixture ratio is 6.0. For the cold flow study, it was more important to match the
O2/H2 momentum ratio than to match the operating mixture ratio.

The collection efficiencies represent the total mass collected in the
collection tubes as a percent of the total injected mass. Em, the mixing parameter, is
calculated in computer program FD0073. The mixing parameter Em is used in the
two-stream-tube method of calculating mixing efficiency. The range of two stream-
tube Em values shown in this table is in the normal range for triplet elements. The
two stream tube Em is indicative of the mixing performance efficiency and periph-

eral thermal compatibility characteristic.

The two-stream-tube mixing parameter, Em, is plotted in Figure
3.3-29 as a function of the oxidizer circuit water spray cone half angle from the
splash tests for the element configurations used in the milkmaid tests. This figure
shows the mixing efficiency is inversely proportional to the oxidizer spray cone
angle. A higher mixing efficiency element confirmation normally implies a more
uniform spray mixture ratio, which was evident when comparing the mixture ratio

contours.
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3.3, Element Design Modifications (cont.)
3.34 Conclusions

The purpose of this study was to see if slight modifications to the
fuel flow cross-section of an 'T' triplet premix element would enhance the wall
compatibility by providing fuel-rich regions around the periphery of the spray fan.

The results of the splash test and milkmaid tests documented
herein prove that this program was successful. The baffle element and center ele-
ment modifications both reduced the ox-rich regions of the thermal boundaries and
gave increased fuel-rich regions along with increased mixing efficiencies due to the
more uniform mixture ratios in the spray fan. These element modifications are also
beneficial since the CdA of the modified elements are within 15% of the baseline
element CdA and therefore will receive about the same flow per element when

incorporated into a full scale injector.

The next phase in evaluation of the T triplet element and modifi-
cations would be hot fire testing. The recommended element configurations for the
hot fire tests are HBAF, ECEN, and ABAS since cold flow data is now available for

these configurations.
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3.0, Injector Studies (cont.)

3.4 INJECTOR FABRICATION STUDIES

3.4.1 Injector Material Selection

The injector design for the 7.5K thrust level engine is illustrated in
Figure 3.4.1-1. The major components consist of the injector fuel manifold, injector
oxidizer manifold, injector face, and baffle assemblies. Weight reduction in the
OTV TCA can be most significantly achieved by optimizing injector manifold mate-
rials for specific strength (strength/density). Additional constraints on injector
material selection include environmental (O2, H2) compatibility for manifolding,
and thermal conductivity for the face. Table 3.4.1-1 summarizes the candidate mate-

rials along with the selection parameters.

Since the three major components (manifolds and face) are inti-
mately fabricated (diffusion bonded, brazed, or welded), there must be a general
compatibility between each of these component materials. This includes not only
metallurgical compatibility but also a reasonable match in thermal expansion coeffi-
cients. If the injector face is considered the most extreme environment, selection of
this component material will strongly influence the selection of materials for the
oxygen and hydrogen manifolds. Selection of an injector face material limits O2 and
H2 manifold material selections. Therefore the overall weight reduction achievable

must be judged by the specific combinations of compatible materials.
3.4.1.1 Injector Face Material Options

Thermal conductivity properties of furnace processed hardware
normally show degradation with solid solution alloying. Thus the first choice for
an injector face would be a pure metal such as nickel or copper. The material
selected for the face also has to be available in the form of platelet stock to facilate
use of platelet fabrication. Processing methods for the selected material must be
demonstrated for achieving high efficiency diffusion bond joints (i.e. leak tight).
Joining of the face to the fuel manifold decrees a reasonable match (+ 5%) in expan-
sion coefficients between the face and fuel manifold materials.
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3.4, Injector Fabrication Studies (cont.)

Nickel Face Plate — The material selection for the 3K thrust level
injector utilized pure nickel (Ni 200 or 201) as the face material. This alloy has mod-
erate thermal conductivity (=40 Btu-in/hr-ft2-°F) and has been successfully diffusion
bonded (to itself and 3xx series stainless steel). An expansion coefficient (70 to
1000°F) of 8.5 x 1076 in/in/°F matches well with most nickel and cobalt base alloys,
particularly Haynes 188, Hastelloy X, Monel K-500, Inconel 625, and Inconel 718.
Diffusion bonding is generally accomplished by using an electroless Ni strike as a
bonding aid.

Although Ni 200, 201, and 270 are severely embrittled by hydro-
gen at room temperature, this effect is not observed at temperatures above approxi-
mately 900°F. Therefore Ni is a viable candidate for the injector face.

Copper Face Plate — OFHC copper and the ZrCu alloy have been
diffusion bonded (to themselves and Zr Cu to 3xx stainless steel). Although the
ZrCu is a solution hardened alloy, its significantly higher strength with little
reduction in thermal conductivity (=170 Btu-in/hr-ft2-°F), makes it a viable
candidate. The thermal expansion coefficient (70 to 1000°F) of 10.75 x 1076 in/in/°F
matches with most austenitic stainless steel alloys such as CRES 347 and 304L, and
CRES 22-13-5, and iron base superalloys such as N-155, A286, Incoloy 800, and
Incoloy 909. A nickel strike is normally used as a bonding aid. As recently
demonstrated on this program (Section 1.3) silver has also shown recent promise as

a bonding aid.

Molybdenum Face Plate — Commercially pure molybdenum has
been bonded to itself for a number of high temperature applications. The high
thermal conductivity of this alloy (=80 Btu-in/hr-ft>-°F) makes it potentially attrac-
tive as an injector face material. Although moly has a very low expansion coef-
ficient (70 to 1000°F) of 3 x 10-6 in/in/°F which is lower than most other structural
alloys. The diffusion bonding process has been shown to cause a recrystallization of
molybdenum resulting in a brittle microstructure. Molybdenum would therefore be

a poor choice for this application.
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3.4, Injector Fabrication Studies (cont.)

Aluminum Face Plate — Aluminum and its alloys have high
thermal conductivity properties, but the melting point (=900° to 1200°F) limits its

usage.

Titanium Face Plate — Although Titanium and its alloys have
very high specific strength properties, the thermal conductivity (=4 to 10 Btu-in/hr-
ft2-°F)is poor. Titanium is also incompatible with high temperature oxygen and
hydrogen, and making it unusable in this application.

3412 Hydrogen Manifold Material Options

The hydrogen manifold offers the greatest opportunity for reduc-
ing the OTV TCA weight through high specific strength materials. The environ-
mental condition most affecting material selection for this component is, of course,
high pressure (2300 to 2545 psi) gaseous hydrogen at 300 to 500°F. General classes of
structural alloys suitable to this environment include austenitic iron base alloys and
cobalt alloys. Nickel base alloys also may be utilized, but show a wide variability to
Hydrogen Embrittlement Environment (HEE), and therefore are generally inferior
to those mentioned above.

The criteria used to rank alloys to HEE is the ratio of notched ten-
sile strength in He to notched strength in Hp. This criteria does not serve to judge
the suitability of an alloy for a given application since it does not consider life prop-
erties (fatigue and creep) and does not apply to conditions where the effective stress
is below the yield strength of the alloy, however it does appear to distinguish fami-
lies of alloys which may be degraded by Hp.

The requirement for directly attaching the platelet injector face to
the H2 manifold places additional constraints on the material selection for this
component. The ability to directly diffusion bond the platelets to the manifold
requires a reasonable match in thermal expansion coefficients with the injector face
material. Consideration is also given to brazing and weldability, including the
effects of braze thermal cycles and final heat treatments.
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3.4, Injector Fabrication Studies (cont.)

Austenitic Iron Base Alloys — Alloys considered in this group are
A-286, CRES 22-13-5 (Nitronic 50), Incoloy 800, 802, and Incoloy 900, 903, 909. The 300
series stainless steels are also contained in this group but offer little in the way of

high specific strength and are included for comparison purposes. Design allowable

tensile properties, thermal expansion coefficients, and densities are presented in
Table 3.4.1-L

Diffusion bonding of these alloys at Aerojet has been limited to
the CRES 300 series. CRES 22-13-5 is a solid solution alloy, similar in metallurgy to
CRES 347, and therefore should not pose any major bonding problems. It may be
anticipated that bonding difficulties will increase with increasing aluminum and
titanium contents. This is due to the high oxygen affinity of these elements which
results in preferential surface oxidation during high temperature processing (i.e. dif-
fusion bonding or brazing). Recent success at diffusion bonding of Inconel 718 show
that it is possible to overcome the aluminum and titanium constituents for high
quality diffusion bond joints. The most common solution to allow brazing of these
alloys is to nickel plate the surface to provide a diffusion barrier. Such an approach
should also be beneficial to diffusion bonding. Incoloy 800 alloys, Incoloy 900 alloys,
and A-286 represent increasing potential risks in diffusion bonding development,
but it is not anticipated that they represent impossible obstacles to bonding based on
the results of the Inconel 718 bonding.

Cobalt Base Alloys — Typical wrought cobalt alloys include
Haynes 188, J-1650, and V-36. WI52isa casting alloy with a reasonable compromise
between strength and ductility. These alloys are typically used in gas turbines under
hot, oxidizing conditions. HEE data on Haynes 188 shows it to be only slightly
affected by gaseous hydrogen, and it is assumed that the other cobalt alloys will be
equally suitable in the OTV H2 environment. Properties for these alloys are given
in Table 3.4.1-1. To date at Aerojet there has been no attempt at diffusion bonding of
cobalt base alloys, therefore all alloys of the class present an unknown risk in diffu-

sion bonding.
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3.4, Injector Fabrication Studies (cont.)
34.1.3 Oxygen Manifold Materials Options

The possibilities of weight reduction in the oxygen manifold are
limited by the effects of the high pressure oxygen on structural alloys. Oxygen inlet
temperatures of 340°F should not pose an oxidation problem for the structural
materials under consideration, even at high pressure (2660 psi), however the poten-
tial for metal ignition and combustion must be addressed in the materials selection.
The risk of metal ignition and combustion are very difficult to assess in a specific
application. Some metals, notably titanium and aluminum, ignite so readily in
oxygen that they are never seriously considered for this type of service. Other alloys,
such as the 300 series stainless steels, are frequently used in high pressure oxygen
systems but have been shown to burn completely if ignited by some external source.
This external source may be a severe rub condition or impact of a combustible mate-
rial (aluminum chip) or some other condition which increases the local tempera-
ture and/or breaks up the protective chromium oxide on the alloy. Although the
velocities in the injector manifold are low, so as not to lend itself toward particle
impact consideration, this is the basis for available oxygen compatibility informa-

tion.

The specific probability of ignition of a metal cannot be calculated,
but it is possible to rank materials as to ignition susceptibility by the use of a calcu-
lated "burn factor". This factor is defined as the ratio of the heat of oxidation of each
of the constituents of the alloy, and the thermal diffusivity (thermal conductivity /
density * specific heat) of the alloy. Table 3.4.1.-I shows a ranked list of some candi-
date structural alloys listed by increasing burn factor. Experience, and ignition tests
performed at NASA's White Sands Testing Facility (Reference 14), have determined
that a burn factor greater than 2500 represents a significant risk of metal combustion.
Table 3.4.1-11, taken from the Metals Test Program Test Report, TR-477-001, to the
ASTM G-4 Committee, shows a promoted combustion ranking of selected metals.
This ranking, based on self-extinguishing oxygen pressure (i.e. the pressure below
which combustion of the alloy is not self-sustaining), shows that most structural
alloys will burn at pressures greater than 1000 psi. Plotting this ranking vs burn
factor, Figure 3.4.1-2, suggests that alloys with a burn factor less than 2300 should not
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TABLE 3.4.1-11

RANKING OF METALS TESTED IN THE PROMOTED COMBUSTION TEST
BASED ON THE SELF-EXTINGUISHING PRESSURE

Self-Extinguishing

Material Pressure
MPa (psig)

Copper 102 55.12P (8000)
Monel 400 55.1aP (8000)
Nickel 200 55.12P (8000)
Tin Bronze 48.33 (7000)
Yellow Brass 48.33 (7000)
Red Brass 48.32 (7000)
Inconel 600 6.9 (1000)
Inconel 625 6.9 (1000)
Stellite 6B 6.9 (1000)
Incoloy 800 3.5 (500)
Inconel 718 3.2 (500)
304 Stainless Steel 3.2 (500)
316 Stainless Steel 3.5 (500)
Colmonoy Alloy No. 70 3.5 (500)
Ductile Cast Iron <3.5 (<500)
Nitronic 60 <3.5% (<500)
9% Nickel Steel <3.5 (<500)
Aluminum Bronze <3.5 (<500)
6061 Aluminum <1.7P (<250)

AR

a2 Highest pressure tested.
b pata from Benz, Shaw, and Homa (1986).
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3.4, Injector Fabrication Studies (cont.)

burn at oxygen pressures less than 3000 psi. The transition from safe to susceptible
alloys is extremely sharp, indicating that for a conservative design it is desirable to
use only alloys proven to be safe at the operating pressure.

The strongest structural alloy meeting this criteria is Monel 400.
This alloy, a non-heat treatable solid solution alloy, has mechanical properties simi-
lar to the 300 series stainless steels, and should have comparable fabrication charac-
teristics (including diffusion bonding). Monel K-500, a derivative Monel alloy, is

heat treatable and considerably stronger than Monel 400, but is at risk of combustion
at 3000 psi oxygen even though the burn factor is less than half that of 300 series
stainless steels. All other normal structural alloys, whether iron or nickel base,
have a major risk of ignition and combustion in high pressure oxygen service.

3.4.1.4 Optimized Alloy Selections

The three major components of the OTV injector (face, H2 mani-
fold, and O2 manifold) have three distinct criteria for optimization. Selection of
each materials for these components requires some compromise in order to permit
fabrication of a monolithic structure by diffusion bonding, brazing, or welding. If
the injector face is considered to be the most critical selection, choice of hydrogen
and oxygen manifolds is limited by that initial face selection, based primarily on

thermal expansion coefficients.

ZrCu Injector Face Options — A ZrCu platelet injector face plate
offers the greatest opportunity for reducing the weight of the OTV injector. The
high thermal of conductivity ZrCu recommends it for face plate applications in any
H,-O; engine design, and additional, the good coefficient of thermal expansion

match with material suitable in both hydrogen and oxygen service, allows for either
diffusion bonding or brazing assembly of the injector, providing an efficient, mini-

mal weight design.

Examination of the list of hydrogen manifold candidates suggests
that Incoloy 909 offers an excellent coefficient of thermal expansion match with
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3.4, Injector Fabrication Studies (cont.)

ZrCu, and offers the highest specific strength of the hydrogen compatible materials.
CRES A-286 and CRES 22-13-5 offer possible alternatives.

The low risk material choices for the oxygen manifold are lim-
ited. Monel 400 (Reference 14) offers the highest specific strength of the candidate
materials, and should be the first material of choice. Incoloy 802 offers a somewhat
higher specific strength, but is marginal from an oxygen environment combustion
stand point.

Ni 200 Injector Face Options — Ni 200 platelet injector face plates
have already been demonstrated for the OTV engine, however the options for a low
risk, low weight injector assembly are limited.

The cobalt base alloys offer the closest coefficient of thermal
expansion (CTE) match with acceptable HEE resistance. Haynes 188 has the lowest
specific strength of the alloys considered and meets the 95% Ni CTE acceptance
requirement. J-1650 provides the highest specific strength, but data on this alloy is
limited. Therefore, Haynes 188 would appear to be the alloy of choice. Experience in
diffusion bonding and brazing this alloy has been limited, due to the aluminum,

titanium, and refractory metal alloying.

As in the case of the ZrCu injector face assembly, the oxygen
compatible material options are limited. Monel 400 again provides a reasonable
CTE match. Development of diffusion bonding and/or brazing parameters should
be no more difficult than in the ZrCu face assembly.

3.41.5 Conclusions

The opportunities for weight reduction in the OTV injector body
can best be realized by changing construction of the Nickel manifold and platelet
face assembly to a ZrCu platelet injector face, diffusion bonded to a forged Incoloy
909 hydrogen manifold, and brazing or diffusion bonding these components to a
wrought Monel 400 oxygen manifold. Some fabrication development should be
anticipated, however the technology is not greatly extended past our current
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3.4, Injector Fabrication Studies (cont.)

database, and useful weight reductions could be anticipated. The exact extent of the
weight savings will require an explicit design and detailed stress calculations.

3.4.2 Platelet Fabrication Methods

3.4.2.1 Laser Cutting of Platelets

Generation of the platelets for the uni-element test fixture evalu-
ated alternate methods of platelet fabrication. Two methods of platelet fabrication
were evaluated, 1) standard chemical etching, and 2) laser cutting. Laser cutting was
selected based on the relative cost and the supporting worder under the 1984 IR&D
Project No. LPS 84-20, "Alternate platelet Fabrication". This work was expanded in
1987 & 1988 by L. Schoenman & J. Franklin and documented in Aerojet memo
#9990:R&T:2389.

Uni-element platelets for the OTV test plan were designed at 2X
scale in stainless steel platelets of 0.010 and 0.032" thickness. Acceptable tolerances of
+/- 0.002" were selected based on current laser technology and performance
requirements.

The above referenced memo reported demonstration of laser cut-
ting for various geometries in stainless steel platelets ranging in thickness from
0.015 to 0.3 inches. This work had been performed primarily with Yttria Alumina
Garnet (YAG) lasers. No indication of the tolerances realized from this work was

noted.
3.4.2.2 Evaluation Criteria

Features of interest in evaluating Chemically Etched versus Laser
Cut include:

Tolerances

Maximum/Minimum Thickness of Material
Surface Finish

Capability of using IGES formatted CAD tape

_ N
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3.4, Injector Fabrication Studies (cont.)
3.4.2.3 Discussion

Tolerances for chemically etched platelets were quoted as a per-
centage (~10% to 15%) of the material thickness. Thus for the 0.010" thick platelets
of interest this would correspond to a range of +/- 0.001 to 0.0015" , whereas the
thicker (0.032") platelets would be held within +/- 0.003 to 0.0035". Tolerances
quoted for the laser cut platelets indicated that they were thickness independent and
could be easily guaranteed at +/-0.005 to +/-0.002. Laser Tech was the only company
which felt comfortable quoting +/- 0.001" tolerance.

Within the confines of chemically etched platelets, thinner stock
is generally more acceptable up to a maximum thickness of 0.030". Laser cutting is
generally aimed at thicker materials. Generally 0.010" thick stock was the thinnest

vendors wished to work with.

Obtaining fine surface finishes with chemical etching is only
dependant on the quality of the platelet stock. With laser cutting of platelets, the
process leaves residual material (dross) on the exit surface. These is a great variation
in the amount of dross formed dependant on 1) use of high pressure O2 or N2 air
&/or mist assistance, and 2) the thickness of the material being cut. The dross is not
fastly anchored and is easily removed using 600 grit emery cloth. Other recommen-
dations for removing the dross chemically included acid bath (pickle) or electropol-

ishing.

Evaluating the transferability of Aerojet CAD tapes was not fruit-
ful. Only one company contacted, H.D.E, would have accepted our tapes if put into
their format. Due to the simplicity of the drawings, and the need to alter the outline
by either a chemical etching or a laser cutting factor most vendors declined to accept
our tapes and chose to work from the drawings. An underlying factor seemed to be
the lack of CAD equipment among the Laser houses. Although not stated as such in
the initial screening process, it would appear that most places sent the drawings to
outside companies for digitizing and post-processing.
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3.4, Injector Fabrication Studies (cont.)
3.424 Aerojet Inspection Results.

Upon receipt at Aerojet, the platelets were inspected using the
Optical Gaging Products (OGP) visual compator device in the platelet shop. The
platelets were inspected, dash number up using bottom lighting. It was noted that
inspection of the as cut platelets was difficult due to the dross (or slag) along the
inside edges. Irregular and erratic readings were taken at times. Assuming a
satisfactory method of removing this layer of dross is proven, the platelets should be

cleaned prior to inspection.

Summarization of the inspection data is broken into three groups
of information. Dimensions for the large holes (0.281" dia bolt holes) are presented
in Table 3.4.2-1 for EB Tec and Table 3.4.2-1I for Laser Tech. Inspection data for the
small holes (0.121" dia alignment pin holes) are presented in Table 3.4.2-III for EB
Tec and Table 3.4.2-1V for Laser Tech. Ability to repeat geometries can be accessed by
a review of this data.

The important inspection data, that of the features, is presented
in Table 3.4.2-V for EB Tec and Table 3.4.2-VI for Laser Tech.

The platelets generated from Laser Tech using a CO2 laser were
well within the requested tolerance of +/- 0.002". Those from EB Tec were found to
be very sloppy. Hole diameters were visibly out of round, and very few platelets
were within the requested tolerance band.

3.4.25 Laser Parameters:

Laser Tech prepared their set of platelets using a Lumonics
Company Futon 500 watt CO> laser. The nozzle is adjustable between a 0.060 to
0.010" diameter. An oxygen assist is utilized and ranges from pressures of 20 to 60
psia. For our job, this machine was run at 25 watts, in a pulsed mode at a 20% duty
cycle. A 3.5 focal point lens was used. The material cut was stainless steel series 302.
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TABLE 3.4.2-]

INSPECTION DATA FOR YAG LASER CUT PLATELETS - BOLT HOLE
DIAMETERS

Vendor - EB Tec

Laser - YAG

Bolt Hole Inspection Summary

Nominal Dimension - 0.281" Bolt Hole Dia
- 1.123" Bolt Circle Dia

Measured Dimensions Deviation from Nominal Dimensions
e Rt e et L it it Pl
\ H Feature ' Feature t
| Dash | Feature Locating Angular ! Feature Locating Angular !
'Number ;Diameter Radius Location | Diameter Radius Location |
' t(inches) (inches) (degrees) | (inches) (inches) (degrees)
Frm————— e it D e e t——m———— -—= —— —-——
D t 0.28220 1.12481 89.98334 | -0.0012 -0.0018 0.0187
. v 0.28378 1.12420 149.96646 | -0.0028 -0.0012 0.0315
: v 0.27973 1.12833 209.97964 | 0.0013 ~0.0033 0.0204
j 1 0.28308 1.12461  269.95505 | -0.0021 -0.0018 0.0449
i t 0.28451 1.12370 329.98490 | -0.0035 -0.0007 0.0061
1 v 0.27979 1.12450 30.00353 | 0.0012 ~0.0016 ~-0.0035
1 [} 1]
1o~2 1 0.28590 1.12420 89.86493 ! -0.0049 -0.0012 0.0151
| i 0.28626 1.12580 150.04719 | -0.0053 -0.0028 -0.0472 .
H 7 0.28634 1.12739 209.86873 ! -0.0053 ~-0.0044 0.1113
H y 0.268470 1.12573 289.95908 | -0.0037 -0.0027 0.0408
' v 0.28716 1.12503 330 H -0.0082 ~0.0020 -0.0357 !
H } 0.283968 1.12685 29 H -0.0030 -0.0036 0.0418
H H i ' ‘
P-4 ! 0.28618 1.12607 89 H -0.0052 -0.0021 0.0654
H 1 0.28568 1.12534 149. H -0.0047 -0.0023 0.0185
H i 0.28387 1.12585 209. | -0.0029 -0.0027 0.0537
H 1 0.28480 1.12540 269. H -0.0038 -0.0024 0.1025
H i 0.28895 1.12533 329. H -0.0059 ~0.0023 0.0444
) 1 0.28335 1.12810 29. ' -0.0023 -0.0031 0.0708
! -5 ! 0.28722 1.12627  90. ! -0.0082 -0.0033 -0.0321
H t 0.28748 1.12721 160. H -0.0065 ~0.0042 -0.0479 ,
1 i 0.20402 1.126888 208. ' -0.0030 -0.0039 0.0623
H ' 0.26649 1.12568 2068. H -0.0065 -0.00268 0.0806
H ' 0.28058 1.12303 329. H ~-0.0068 -0.0000 0.0142
E E 0.26485 1.126802 30 H -0.0038 -0.0030 ~-0.0509 !
‘ ' H '
'5 -8 v 0.20654 1.12508 80. ; -0.005%5 -0.0021 -0.0018
H 1 0.28455 1.12458 149. H -0.0035 -0.0018 0.0171 !
H i 0.283684 1.12481 209. H -0.0026 -0.001¢ 0.0543 !
H v 0.28765 1.12397 269. ! -0.0068 -0.0010 0.0498 '
1 1 0.28597 1.12680 329. H -0.0050 -0.0026 0.0011 |
' E 0.282683 1.12452 29. H -0.0018 -0.0016 0.0060
: H ] .
HEES B | \ 0.28507 1.12816 90. E -0.0041 -0.0032 -0.01568 |
H i 0.20583 1.12618 160. H -0.0048 -0.0032 -0.0114 .
1 i 0.28551 1.12708 209. H -0.0045 -0.0041 0.1196 '
' v 0.26453 1.12313 269. H -0.0038 -0.0001 0.1006 !
H t 0.28641 1.12398 330. H -0.0054 -0.0010 ~-0.0211 |
s E 0.20233 1.12383 28. H -0.0013 -0.0008 0.0223 |
1 L] : :
1 -12 ! 0.28618 1.12549 90. H ~0.0052 -0.0025 ~0.0008 |
H } 0.28628 1.12584 150. H ~-0.0053 -0.0028 -0.0142 )
‘ | 0i3558; 1112655 560.07aes |  “olgoda 0003  0.0z14 |
H 1 0.2885 1.128 269. H ~0.004 -0. .
‘ 1 0.28853 1.12381 330. 4 ~0.0055 -0.0008 ~0.0179 |
| 1 0.28521 1.12558 30. H -0.0042 -0.0028 -0.0705 |
{ -13 | 0.28791 1.12616  90. ! -0.0068 -0.0032 -0.0431 !
| ! 0.28786 1.12642 153. ' —ggggg —gggg; :3.0205 :
H ! 0.28392 1.12828 210. H -0. -0. . 0090
| v 0.28513 1.12700 269. H -0.0041 -0.0040 0.0732
H ! 0.28707 1.12497  328. H -0.0061 -0.0020 0.0328
H { 0.28612 1.12573 30 H -0.0051 -0.0027 -0.0720 |
1 [} 1
" 1} 1}
v =15 ! 0.28552 1.12594 89 H -0.0045 -0.0029 0.0140 !
' 1 0.28885 1.12545 150 H ~0.0078 -0.0025 -0.0236 |
' ! 0.28590 1.12568 209 H -0.0049 -0.0027 0.0402 !
H 1 0.28611 1.12518 269 H -0.0061 -0.0022 0.0304 |
: { 0.28640 1.12429 330 {  -0.0054 -0.0013 -0.0211 |
1 ) 0.28282 1.12453 30 H ~-0.0018 ~0.0015 -0.0089 |
1] 1] v
i -18 1 0.28545 1.12504 B89 H -0.0044 -0.0020 0.0388 :
1 1 0.28731 1.12843 149 H -0.0083 ~0.0034 0.0138 |
' t 0.28549 1.12732 209 H -0.0045 ~0.0043 0.0885
) t 0.20466 1.12535 269 H ~0.0038 -0.0024 0.0483 !}
H t 0.20744 1.12437 330 H -0.0084 -0.0014 -0.0001 !
H v 0.28311 1.12538 28 H -0.0021 -0.0024 0.0253 ¢
$mmm———— B et it dm——mm——— -- -—-
: ! Averag ' -0.0038 -0.0020 0.0154 |
Ao LT T T T TR e S e e



TABLE 3.4.2-11

INSPECTION DATA FOR CO2 LASER CUT PLATELETS- BOLT HOLE DIAMETERS

Vendor - Laser Tech

Laser - CO2

Bolt Hole Inspection Summary

Nominal Dimension - 0.281" Bolt Hole Dia
- 1.123" Bolt Circle Dia

Neasured Dimensions Deviation from Nominal Dimensions
bomm———— drerrmccremcee e m e e n e e ——————— + e ——— - ——————
H H Featurs H Feature 7
+ Dash | Feature Locating Angular + Feature Locating Angular |
'Number Diameter Radius Location | Diameter Radius Location |
H ! (inches) (inches) (degrees) | (inches) (inches) (degrees) |
+ + R i
-1 i 0.279889 1.12502 80.03423 | 0.0011 -0.0020 -0.0342 |
H 1 0.27894 1.12496 150.01182 0.0021 -0.0018 -0.0119 |
H ¢ 0.28008 1.12499 210.04502 | 0.0008 -0.0020 -0.0450
B 1 0.28004 1.12588 209.99995 | 0.0010 -0.0028 0.0000 ,
H ¢ 0.27857 1.12455 329.98348 | 0.0024 -0.0015 0.0185
E E 0.28034 1.12532 30.0031 | 0.0007 -0.0023 -0.0031 :
V-2 1 0.28085 1.125%12 80.02151 | 0.0001 -0.0021 -0.0215 ,
1 t 0.28121 1.12518 150.0287 | ~0.0002 -0.0022 -0.0287
1 { 0.208005 1.125681 210.00372 | 0.0001 -0.0028 -0.0037 !
1 i 0.20054 1.12544 270.0065 | 0.0005 -0.0024 -0.0085 |
i \ 0.282668 1.12477 329.97872 | -0.0017 -0.0018 0.0213
| 3 0.28090 1.12425 28.994 | 0.0001 -0.0012 0.0060 |
i : H t
P-4 ¢ 0.28089 1.12542 $0.01391 | 0.0001 -0.0024 -0.0138 )
' 1 0.28004 1.12508 150.03094 | 0.0010 -0.0021 ~0.0309
1 1 0.28032 1.12502 210.04083 0.0007 -0.0020 -0.04086 !
1 ¢ 0.28128 1.12587 270.04857 | -0.0003 -0.0026 -0.0486 |
i i 0.28108 1.12582 330.02154 | ~0.0001 -0.0028 -0.0215
1 ! 0.28082 1.12531 30.016803 | 0.0001 -0.0023 -0.0180 !
' ' ' |
H ] ¢ 0.28003 1.12526 89.99871 | 0.0010 -0.0023 0.0013 [
H ¢ 0.27971 1.12548 146.98821 | 0.0013 -0.002% 0.0108
H ¢ 0.28064 1.12528 210.01331 0.0005 -0.0023 ~0.0133 !
) + 0.28102 1.12487 270.01128 | -0.0000 -0.0018 ~0.0113
H t 0.28123 1.12637 330.02774 | ~-0.0002 -0.0024 ~-0.0277
H 1 0.28191 1.12661 30.01186 | =-0.0008 -0.00256 -0.0115 !
[} 1] 1
' ' 1
1 -8 ! 0.27981 1.12527 90.00918 | 0.0012 -0.0023 -0.0092 !
H } 0.27872 1.12242 149.92188 | 0.0023 0.0006 0.0781 |
H 1 0.27963 1.12418 209.9858 0.0014 -0.0012 0.0141
1 ! 0.20177 1.12527 270.01322 | -0.0008 -0.0023 -0.0132 |
' ! 0.28033 1.12539 330.03679 | 0.0007 -0.0024 ~0.0388
H 7 0.2813 1.12501 30.01392 | -0.0003 -0.0020 -0.0139 |
[} 13 1
. L] .
-1 1 0.28004 1.1261 89.99332 | 0.0004 -0.0021 0.0087 !
H 1 0.28008 1.12461 149.980637 | 0.0009 -0.0015 0.0136 |
H 1 0.27986 1.12537 210.02798 | .0010 -0.0024 -0.0280 |
H ! 0.28051 1.12444 270.00785 | 0.0006 -0.0014 -0.0078
H 1 0.28124 1.12659 330.035684 | -0.0002 -0.0028 -0.0368 |
H 1 0.28075 1.12489 30.00885 | 0.0003 -0.0018 -0.0088 |
1] ’ L]
1 -12 1 0.28008 1.12532 80.00208 | 0.0008 -0.0023 -0.0021
' ! 0.27988 1.12537 149 9867 | 0.0011 -0.0024 0.0133
| { 0.208102 1.12513 210.027688 -0.0000 -0.0021 -0.0279 |
\ ! 0.27958 1.12472 289.99903 ! 0.0014 -0.0017 0.0010 |
H ! 0.28145 1.12154 330.03258 | -0.0004 0.0015 -0.0326
H ! 0.28142 1.12549 30.02471 -0.0004 -0.002% -0.0247 |
1} + [}
. 1 +
y -13 ! 0.28087 1.12498 69 98281 | 0.0003 -0.0020 o.o172 |
' {0 0.2614 1.124684 9.99186 ! ~0.0004 -0.0018 0.0061 ]
) ! 0.28082 1.12539 209 9988 | 0.0004 -0.0024 0.0012
H : 0.28018 1.12598 269.96348 0.0008 -0.0030 0.0185 |
' ! 0.28018 1.12425 329.95183 | 0.0008 -0.0012 0.0484
| 1 0.28056 1.12487 30.011683 | 0.0004 ~0.0018 -0.0118 |
' ' .
1 -1% P 0.28144 1.12479 90.01219 | ~0.0004 -0.0018 -0.0132 '
) ! 0.28001 1.12531 149.97518 | 0.0010 -0.0023 0.0248 |
) ! 0.27957 1.12556%5 209.98153 | 0.0014 -0.0028 0.0185
H ! 0.28051 1.12518 209.95801 | 0.0005 -0.0022 0.0420 |
1 1 0.28005 1.12452 329.98505 | 0.0010 -0.00156 0.0148
| 1 0.280688 1.12441 30.00928 | 0.0003 -0.0014 -0.0093 |
1 [} 1}
! ~168 ! 0.28093 1.12518 89.96843 | 0.0001 -0.0022 0.0316
' } 0.27824 1.12558 145.96543 ; 0.0028 ~0.0026 0.03486 |
i P 0.2795 1.1289%9 209.94813 | 0.0015 -0.0040 0.0518 1
H } 0.28018 1.1241 2689.94218 | 0.0008 -0.0011 0.0578
' ! 0.27982 1.12421 329.9441 | 0.0012 -0.0012 0.0559 |
H \ 0.28041 1.1235 30.02851 | 0.0006 ~0.0005 -0.0285 '
tom———— $omememcmmmeeee—ecec e ———— + - -——- —-—= - -
H H Average H 0.0005 -0.0020 -0.0009
dommmm—— $rmemrm e mE et e e e ——— - B e e TRl Dbt g -



TABLE 3.4.2-111

INSPECTION DATA FOR YAG LASER CUT PLATELETS - ALIGNMENT PIN HOLE
Vendor - EB Tec DIAMETERS
Laser - YAG
Alignment Pin Hole Inspection Summary
Nominal Dimension - 0.121" Alignment Pin Hole Dia
- 0.75" Alignment Pin Circle Dia

Measured Dimensions Deviation from Nominal Dimensions
tmm————— B i T TS, e o 9
: ' Feature ! Feature }
i Dash . Feature Locating Angular i Feature Locating Angular ,
iNumber |Diameter Radius Location | Diameter Radius Location |
' i (inches) (inches) (degrees) | (inches) {inches) (degrees) |
pm—————— o o
' -1 1 0.12128 0.74981 359.97988 ! -0.0003 0.0002 0.0201 :
' 1 0.12207 0.75071 120.01204 | -0.0011 -0.0007 -0.0120 |
H i 0.12160 0.75048 239.90395 | -0.0006 -0.0005 0.0980 |
] 1 3
' -2 | 0.12438 ' -0.0034 !
H 1 0.12514 0.74157 121.21327 ! -0.0041 0.0084 -1.2133 |
! ! 0.12550 0.75059 239.93955 ! -0.0045 -0.0008 0.0805 |
i -4 | 0.12529 i -0.0043 {
H 1 0.12429 0.75888 118.74981 | -0.0033 -0.0089 1.2504 |
! v 0.12450 0.75070 239.92052 ! -0.0035 -0.0007 0.0795 |
H : ' !
1 -5 1 0.12405 0.75021 0.00387 ; ~-0.0030 -0.0002 -0.0037 |
H 1 0.12488 0.75089 120.04874 | -0.00389 -0.0007 -0.0487 |
! ! 0.12484 0.75088 239.87773 | -0.00386 -0.0009 0.1223
: H ' !
i -8 ! 0.12398 ' -0.0030 !
' i 0.12458 0.75470 119.40128 | ~0.0038 -0.0047 0.5987
: 1 0.12439 0.75040 239.97138 | -0.0034 -0.0004 0.0288 |
H : H i
!-11 ! 0.12483 H -0.0038 i
H 't 0.12480 0.75758 119.07210 -0.0038 -0.0078- 0.9279 !
: 1 0.12524 0.75008 239.80589 | -0.0042 -0.0001 0.1943 :
1 ) ‘
(] ) )
' =12 ! 0.12403 : -0.0030 :
! ! 0.12553 0.75245 119.72298 ! -0.0045 -0.0024 0.2770 I
H ! 0.12501 0.75083 239.97045 | -0.0040 -0.0008 0.0298 |
(] [} 1
! -13 ! 0.12558 ! -0.0048 |
' 1 0.12593 0.77183 117.25133 ! -0.0049 -0.0218 2.7487 |
H i 0.12488 0.75180 239.94803 | -0.0040 -0.0018 0.0510 |
) ] 4
! -15 ! 0.12531 : -0.0043 !
H 7 0.12741 0.73485 122.08820 | -0.0084 0.0151 -2.0882 !
H ' 0.12655 0.74972 239.82082 | -0.0055 0.0003 0.0794 !
[} [} s
i -18 | 0.12519 ! -0.0042 :
! ! 0.12582 0.88348 133.52105 ! -0.0048 0.0885 -13.5211 I
! 7 0.12550 0.75045 239.8687685 | -0.0045 -0.0004 0.1324 |
O — o ———— e SO |
! ' Average ' -0.0037 0.0019 -0.3397 !
e ey . e 1
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TABLE 3.4.2-1V

INSPECTION DATA FOR CO2 LASER CUT PLATELETS - ALIGNMENT PIN HOLE
Vendor - Laser Tech DIAMETERS

Laser - CO2

Alignment Pin Hole Inapection Summary

Nominal Dimension - 0.121" Alignment Pin Hole Dia
- 0.75" Alignment Pin Circle Dia

Measured Dimensions Deviation from Nominal Dimensions

tom————— e e — e ——————— +
H ! Feature H Feature !
! Dash | Feature Locating Angular i Feature Locating Angular H
!Number !Diameter Radius Location | Diameter Radius Location |
H !(inchems) (inches) (degrees) | (inches) (inches) (degrees)

o m———— et ——————— e e +
HEES 1 0.11981 0.74981 359.99549 | 0.0012 0.0002 0.0045 !
! ¢ 0.11992 0.74998 119.98553 | 0.0011 0.0000 0.0145 !
! ' 0.12007 0.75048 240.04344 | 0.0009 -0.0005 -0.0434 !
(-2 ! 0.12143 0.74988 0.01665 ! -0.0004 0.0001 -0.0167 |
! ' 0.12182 0.75009 120.01108 | -0.0008 -0.0001 -0.0111 !
! ! 0.12088 0.75078 240.00082 | 0.0001 -0.0008 -0.0008 |
[} ] [} t
! -4 ' 0.12121 0.74997 359.99717 | -0.0002 0.0000 0.0028 |
! ' 0.12071 0.74991 119.99223 | 0.0003 0.0001 0.0078 |
! ! 0.12104 0.74984 240.04428 | -0.0000 0.0002 -0.0443 |
[] ] ] ]
] ] ) )
=5 ! 0.12112 0.75010 359.98722 | -0.0001 -0.0001 0.0128 !
' ' 0.12112 0.75024 120.01192 | -0.0001 -0.0002 -0.0119 ;
! ! 0.12081 0.75037 239.99887 | 0.0002 -0.0004 0.0011 |
[] ] [} ]
! -8 ' 0.12110 0.74988 359.99511 | -0.0001 0.0001 0.0049 |
i ' 0.12036 0.75011 119.99359 | 0.00086 -0.0001 0.0084 |
! ' 0.12085 0.75001 239.96159 | 0.0001 -0.0000 0.0384 |
i 11 ! 0.12110 0.75018 0.00188 !  -0.0001 ~0.0002 -0.0019 !
: ! 0.12033 0.74983 120.00300 | 0.0007 0.0002 -0.0030 |
! ! 0.12088 0.75033 240.01223 | 0.0001 -0.0003 -0.0122 |
(] [} 1 ]
E -12 ' 0.12100 0.75010 0.00329 | 0.0000 -0.0001 -0.0033 |
! ' 0.12079 0.75059 120.03604 | 0.0002 -0.0008 -0.0360 |
! ' 0.12052 0.75024 240.03785 | 0.0005 -0.0002 -0.0378 |
] ] : ) : :
; -13 E 0.12057 0.74990 0.00282 | 0.0004 0.0001 -0.0028 |
! ! 0.12085 0.74953 119.97823 | 0.0001 0.0005 0.0218 |
H ' 0.12088 0.75081 239.97248 ! 0.0001 -0.0008 0.0275 |
: | ' :
'\ =15 1 0.12135 0.74995 0.00009 | -0.0004 0.0000 -0.0001 |
! ' 0.12081 0.75063 120.02241 ! 0.0002 -0.0008 -0.0224 |
' 1 0.12078 0.75018 239.92408 ! 0.0002 -0.0002 0.0759 |
[ ] [} :
E -18 ' 0.12140 H -0.0004 0.7500 0.0000 |
! ! 0.11959 0.77300 117.21328 | 0.0014 -0.0230 2.7867 |
! ! 0.12078 0.75082 239.83833 | 0.0002 -0.0008 0.1817 |
ommm——— S e m e e ———————— - ———— +
H H Average H 0.0002 0.0241 0.0912 |
b—————— o m e ———————— fmm e e ———— e +
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TABLE 3.4.2-V

INSPECTION DATA FOR YAG LASER CUT PLATELETS - CRITICAL FEATURE

DIMENSIONS
Vendor - EB Tec Feature Size
Laser - YAG Inepection Summary
Deviation
Nominal Measured from
Dimensions Dimensions Nominal Dimens
—————— fomm S o ——————————— o ———————
H H ! Feature! Feature | Feature

t Dash :DimenaioniFeature Locatin] Feature Locating| Feature Locating
iNumber! Type iDiameterRadius |Diameter Radius |Diameter Radius
H H i (inches)(inches| (inches) (inches)|(inchea) (inches)

|
I
]
1
- T S Fommm e P U o :
! -1 !Diameter ! 0.132 0.320 ! 0.13235 0.32039 ! -0.0003 =-0.0004 |
: ‘Diameter | 0.152 0.000 ! 0.15294 0.00071 | -0.0008 -0.0007 ,
: 'Diameter | 0.132 0.320 ! 0.13354 0.31952 ! -0.0015 0.0005 |
: : ] ) 1 '
{ -2 iRadius ! 0.107 0.279 ! 0.10913 0.27810 ! -0.0021 0.0009 |
: {Radius | 0107 0279 { 0110951 0.27878 | -0.0025 0.0002 !
[] 1 ) 1 )
[
! -4 !Radius | 0.066 0.320 ! 0.08810 0.31929 ! -0.0021 0.0007 '
: ‘Radius | 0.107 0.000 ! 0.11055 0.00418 | -0.0035 "-0.0042 !
; 'Radius | 0.107 0.000 ! 0.10904 0.00098 | -0.0020 ~-0.0010 |
: 'Radius | 0.088 0.320 | 0.08837 0.32015 | -0.0024 -0.0001 |
: 'Width | 0.078 ! 0.08199 ! -0.0040 r
: ‘Width | 0.078 ! 0.08243 { ~0.0044 |
[} ] [} ) []
1 ] )
' -5 !Radius ! 0.088 0.320 ! 0.06787 0.31951 ! -0.0018 0.0005 '
: 'Radius | 0.088 0.320 ! 0.07236 0.31815 | -0.0084 0.0038
' 'Width ! 0.214 ! 0.22077 ¢ -0.0088 :
(] [] 1 1 3
i -6  iDiameter | 0.284 ! 0.30832 ! -0.0243 !
) ] () [] : l
! =11 !Radius | 0.115 0.271 ! 0.11680 0.27097 ! -0.0018 0.0000 |
: 'Radius | 0.077 0.309 | 0.07858 0.30825 | -0.0016  0.0007 |
: {Radius | 0.115 0.000 | 0.11477 0.00386 { 0.0002 -0.0037 |
: {Radius | 0.115 0.000 | 0.14386 0.02931 | -0.0289 -0.0293
] 1 ] 3 []
1
! =12 !Radius | ©0.115 0.271 ! 0.11564 0.27214 ! -0.0008 -0.0011 !
: 'Radius | 0.115 0.009 | 0.12010 0.00461 ! -0.0051 0.0044 !
; 'Radius | 0.115 0.000 ! 0.10896 0.18953 ! 0.0080 -0.1685 |
: iRadius | 0.086 0.320 | 0.06879 0.31838 | -0.0028 0.0016
: iWidth | 0.078 \ 0.08135 ! -0.0034 |
: 'Width | 0.1186 | 0.119486 ! ~0.0035 !
] () [] [] 1
1] 1 (] 1]
! -13 !Radius | 0.111 0.275 ! 0.11204 0.27714 | -0.0010 -0.0021 |
: 'Radius | 0.094 0.292 { 0.09523 0.29282 | -0.0012 -0.0008 |
; 'Width | 0.188 ! 0.19318 I ~0.0052 :
: 'Width | 0.115 ! 0.11935 ! -0.0043 |
[ ] (] [] )
t L
! =15 !Radius ! 0.107 0.279 ! 0.11726 0.27218 | -0.0103 0.0068 |
: 'Radius | 0.088 0.032 ! 0.07152 0.32055 ! -0.00556 -0.2885 |
) [} ‘ : : I
i 16 !Radius | 0.115 0.271 } 0.11502 0.27328 { -0.0000 -0.0023
; iRadius | 0.088 0.320 ! 0.068822 0.31978 ! -0.0022 0.0002
e o e e O P — e d
: : ; : Average | -0.0037 -0.0134 !
e b —————— Frmm— e, ————— B B ettt <+
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TABLE 3.4.2-V]

INSPECTION DATA FOR CO2 LASER CUT PLATELETS - CRITICAL FEATURE
DIMENSIONS

Vendor - Laser Tech Feature Size

174

Laser - CO2 Inspection Summary
Deviation
Nominal Measured from
Dimensions Dimensions Nominal Dimensign
$om————— pomm—————— o ————————— b —— - + ——————————————————— |
! H ' Feature | Feature | Feature
' Dash !Dimension)Feature Locating,Feature Locating! Feature Locating
!Number; Type 'Diameter Radius 'Diameter Radius !Diameter Radius
i H ‘ (inches) (inches) ! (inches)(inches) | (inches) (inches) l
$o—mm—— ————————— $mmmm—mm—— e m—— e o m——— e fo e —— e .
! =1 ‘Diameter | 0.132 0.320 !0.13120 0.31998 | 0.0008 0.0000
H 'Diameter | 0.152 0.000 !0.15106 0.00023 | 0.0008 -~0.0002
' 'Diameter | 0.132 0.320 !0.13085 0.32005 | 0.0014 -0.0000
1 [} ) ] ]
1 ] 1 ) 1
) ‘Radius ! 0.107 0.279 !0.10779 0.27793 | -0.0008 0.0011
; '‘Radius t0.107 0.279 !0.10739 0.27888 |} -0.0004 0.0003
) (] t ] )
] (] + ] )
. | ‘Radius ' 0.068 0.320 !0.08533 0.31837 | 0.0007 0.0006
! ‘Radius ' 0.107 0.000 '0.10772 0.00104 | -0.0007 -0.0010
H ‘Radius v 0.107 0.000 !0.10882 0.00073 | 0.0002 -0.0007
H ‘Radius ! 0.068 0.320 !0.08597 0.32058 | 0.0000 -0.0006
! 'Width v 0.078 10.07774 + 0.0003
H 1Width ! 0.078 10.07828 ! -0.0003
) ] 1 ] )
5 ] ] ] [}
) ‘Radius ' 0.088 0.320 !0.08643 0.32028 ; -0.0004 -0.0003
' i Radius ' 0.068 0.320 !0.08612 0.32014 | -0.0001 -0.0001
1 'Width v 0.214 10.21281 ! 0.0012
) ] ] t 1
) [] ) ) 1
‘-8 ‘Diameter ! 0.284 10.283768 0.00011 | 0.0002 -0.0001
4 1] ] 1 ]
1 ) L} ] ]
' -11 }Radius v 0.115 271 '0.11472 0.27080 | 0.0003 0.0002
: ‘Radius v 0.077 0.309 !0.07812 0.30537 | -0.0011 0.0036
H 'Radius ' 0.115 0.000 !0.08404 0.05108 | 0.0510 -0.0511
! ‘Radius ¢ 0.115 0.000 !0.14589 0.03089 | -0.0309 -0.0309
[) ) (] [ ] 1
t ] ) ] ]
! =12 Radius ! 0.115 0.271 !0.11431 0.27104 | 0.0007 -0.0000
' ‘Radius ' 0.115 0.009 !0.11593 0.00101 } -0.0009 0.0080
H ‘Radius ' 0.115 0.000 !0.11438 0.00033 | 0.0008 -0.0003
H ‘Radius 1 0.088 0.320 !0.06593 0.32026 | 0.0001 -0.0003
! ‘Width ! 0.078 10.07768 ! 0.0003
' 'Width ¢t 0.118 10.11457 ¢ 0.0014
] () t 1 1
1 L] 1 1 ]
' -13 |Radius v 0.111 0.275 '0.10994 0.27667 | 0.0011 -0.0017
! 'Radius ! 0.094 0.292 !0.09324 0.29331 | 0.0008 -0.0013
! iWidth ! 0.188 10.187685 ! 0.0003
: 'Width ! 0.115 10.11513 ! -0.0001
] [ ] (] ] ]
] [] 1 ] [}
! -15 {Radius ¢ 0.107 0.279 '0.10623 0.28018 | 0.0008 -0 0012
1 {Radiue ' 0.068 0.032 !0.08594 0.31982 | 0.0001 -0.2878
[} t ] 1 )
t (] t ] ]
t =186 !Radius v 0.115 0.271 !0.11571 0.26957 | -0.0007 0.0014
H !'Radius ! 0.0868 0.320 !0.068811 0.31839 | -0.0001 0.0006
e mm—————— o m———————————— o —— fmmm e ———— e ————
: : H H Average ! 0.0007 -0.0095
pm———— $omm e frmm—e—————— - e ———————— - —————————



3.4, Injector Fabrication Studies (cont.)

EB Tec prepared their set of platelets utilizing a Raytheon 400 watt
YAG laser. The nominal beam diameter is 0.018" diameter, which can be adjusted
down to 0.005" diameter. A oxygen assist was utilized at 60 psi. The stainless steel
series utilized is unknown.

3426 Platelet Cleanup Methods

To remove the dross, 3 methods were explored: 1) 600 grit emery
cloth followed by water flow, 2) electropolishing, and 3) acid etch (pickle). The -11
geometry platelets were used for the evaluation of the cleaning methods. A control
platelet from each vendor was also viewed under the SEM for comparison. These
are shown in Figures 3.4.2-1 and 3.4.2-2. Figure 3.4.2-1 illustrates the geometry of the
element feature with SEM's of the platelet sides where the laser beam entered and
exited (300X magnification). Figure 3.4.2-2 shows the exit surface of the two as-
received platelets at 120X magnification.

Figure 3.4.2-3 presents the exit surface of the platelets after dross
removal. The chemical cleaning methods tried were a rough first cut at solution,
temperature, and time. Promise is shown by these methods and remaining dross
could be removed by optimization of either time exposed to the solution or expo-
sure at increased temperature. For this initial try, the acid etch (pickle) yielded the
best results in terms of removing the dross without severely attacking the base

metal.
Method #1 (Figure 3.4.2-3¢):

Emery cloth (600 grit) was used to remove the dross from the
mating surfaces of the platelets. The platelets were taped to the bottom plate of the
test fixture and dry lapped in a 'figure 8' pattern. The platelets were stacked loose on
the flow fixture and bolted together. Subsequent flow testing then removed the
dross on the inside walls of the element feature. Inlet pressure for the fuel side was
set at 117 psi with gaseous nitrogen flow. Inlet pressure on the oxygen circuit was set
at 248 psi with water flow.
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3.4, Injector Fabrication Studies (cont.)
Method #2 (Figure 3.4.2-3b):

The chemistry lab within Test Area "A" prepared and electropol-
ished a platelet for 5 min at 5.9 amps. The solution was 75% phosphoric acid and
water. Copper sheets were used for the anode. Starting weight was 8.62170 grams
with a weight loss of 0.31110 grams.

Method #3 (Figure 3.4.2-3a):

The chemistry lab within Test Area "A" prepared and pickled a
platelet for 30 minutes at 140 to 185 deg F. The solution used was a 300 series stain-
less pickle composed of 100 cc HO, 130 cc HNO3, and 10 cc HF. Starting weight was

8.64523 grams with a weight loss of 0.13613 grams.
3.42.7 Conclusions
The initial findings on this study for stainless steel platelets are:
1) Laser cutting can be cheaper than chemical milling

2)  Remaining dross on the platelets should be removed by
exposure to a SS Pickle solution prior to inspection and use.

3)  Operator skill is at least equally important as the type of
equipment used.

4)  Thicker platelets are more suitable for laser cutting than
chemical etching.

5)  Although not demonstrated within this study, laser cutting
has the ability to make angular cuts. -
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APPENDIX 1

A COMPARATIVE ROD APPARATUS FOR MEASURING
THERMAL CONDUCTIVITY TO 2000 °F

Southern Research Institute's comparative rod apparatus is used to
measure thermal conductivities of a wide variety of materials from -300 °F
to 2000 °F. This apparatus shown schematically in Figure 1, consists basi-
cally of two cylindrical reference pieces of known thermal conductivity
stacked in series with the cylindrical specimen. Heat is introduced to one
end of the rod, composed of the references and specimen, by a small electri-
cal heater. A cold sink or heater is employed at the opposite end of the
rod as required to maintain the temperature drop through the specimen at the
preferred level. Cylinders of zirconia may be inserted in the rod assembly
to assist in controlling the temperature drop. Radial losses are minimized
by means of radial guard heaters surrounding the rod and consisting of three
separate coils of 16, 18 or 20-gage Kanthal wire wound on & 2 or 4- inch
diameter alumina core. The annulus between the rod and the guard heaters is
filled with diatomaceous earth, thermatomic carbon, bubbled alumina or zir-
conia powder. Surrounding the guard is an annulus of diatomaceous earth
enclosed in an aluminum or transite shell.

The specimens and references (see Figure 2) are normally 1 inch diameter
by 1 inch long. Thermocouples located 3/4 inch apart in radially drilled holes
measure the axial temperature gradients. Thermocouples located at méiching
points in each guard heater are used to monitor quard temperatures, which are
adjusted to match those at corresponding locations in the test section.

In operation, the apparatus is turned on and allowed to reach steady
state. The guard and rod heaters are adjusted to minimize radial temperature
gradients between the rod and guard sections consistent with maintaining equal
heat flows in the references. Temperatures are measured on a Leeds and Northrup
Type K-3 potentiometer, and the temperature gradients calculated. A typical
temperature profile in the test section is shown in Figure 3.

The thermal conductivity of the specimen is calculated from the relation

¢ = KiaT + KaaT AXg
S ZATS AXr
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where K, and K, are the thermal conductivities of the upper and lower
references; AT,, AT, and ATg are the temperature differences in the upper
and lower references and specimen, respectively; AXs and AXp are the
distances between thermocouples in the specimen and references.

Note that for purely axial heat flow, the products K,AT; and K;AT,
should be equal. Due to imperfectly matched guarding and other factors,
this condition is seldom attained in practice; therefore, the average of
the two values is used in the calculations. Their difference is maintained
as small as possible, usually within 5 percent of the smaller.

For identical specimens, the ratio AXs/AXr should be unity but may
vary due to the uncertainty in hole locations. To prevent introducing an
additional error in calculations, AX is determined as follows: the depth
of the hole is measured by inserting a snugly fitting drill rod in the hole,
measuring the projecting length and subtracting it from the total length of
the rod. The slope, or angle the hole makes with the perpendicular to the
specimen axis, is determined by making measurements to the face of the hole
and the outer end of the drill rod with respect to a datum plane, using a
dial gage. From these measurements, the location of the bottom of the hole
can be calculated.

Generally, measurements with the comparative rod apparatus are per-
formed in an inert helium environment. The apparatus can also be operated
in vacuum and at gas pressures of up to 100 psig. We have had experience
operating under all conditions.

The primary reference materials which we use are Code 9606 Pyroceram
and Armco iron for measurements on materials with low and high thermal con-
ductivities, respectively. Primary standard reference sets are kept and
are used to calibrate other references made from the same materials. The
standards of Code 9606 Pyroceram were made from a batch of material which
NBS purchased shortly after their measurements on a sample of Code 9606
Pyroceram. The curve which Flynn presented for the thermal conductivity of



the Pyroceram is given in Figure 4!, Note that the curve is in good agreement
with the recommended values from NSRDS-NBS 82, The standards of Armco iron
were made from the stock which was used in the round-robin investigations from
which Powell? developed the most probable values for Armco iron. The curve
used for the Armco iron standards is shown in Figure 5. Powell estimated the
uncertainty to be within t2 percent over the temperature range from 0° to

1000 °C. Note in Figure 5 that numerous evaluations of Armco iron from other
batches of material have agreed within *3 percent (coefficient of variation
about curve) with Powell's original data.

In addition to Code 9606 Pyroceram and Armco iron several other materials
have been used as references. These include copper for high conductivity
specimens, 316 stainless steel for specimens of intermediate thermal conduc-
tivity and Teflon or Pyrex for low conductivity materials.

Copper references have been calibrated against Armco iron and excellent
agreement with literature data has been obtained. Thermal conductivity values
obtained from calibrations of 316 stainless steel against Pyroceram, Armco iron
and a set of 316 stainless steel standards are presented in Figure 6. HNote the
consistency of the data obtained with the three different sets of references.
The coefficient of variation of the data shown in Figure 6, about the curve
value, was +3.3 percent. These data indicate the internal consistency of the
stainless steel and the reference materials. Note that the thermal conductivity
values for 316 stainless steel presented in Figure 6 lie between values reported
by several steel manufacturers and Lucks and Deem.*

'Robinson, H. E. and Flynn, D. R., Proceedings of Third Conference on
Thermal Conductivity, pages 308-321, 1963 (with author's permission).

2powell, R. W., Ho, C. Y., and Liley, P. E. Thermal Conductivity of
Selected Materials, NSRDS-N8S 8, Department of Commerce, November 25, 1966.

‘powell, R. W., Proceedings of Third Conference on Thermal Conductivity,
pages 322-341, 1963.

“WADC TR58-476, "The Thermophysical Properties of Solid Materials,"”
Armour Research Foundation, November, 1960.



The calibrations indicate that for materials with moderate to high
thermal conductivities the apparatus operates with a precision of about *3
percent and a total uncertainty of about *5 percent at temperatures above
0 °F if temperatures between the guard and test section are closely matched.
Below 0 °F, the precision achieved to date has been about +7 percent with a
total uncertainty of about 10 percent. We anticipate that the precision
and uncertainty at cryogenic temperatures can be improved by additional
calibrations.

Some additional data obtained on the comparative rod apparatus are
shown in Figure 7 and 8. Figure 7 shows thermal conductivity data for ATJ
graphite, with grain, using Armco iron as the reference material. These
data show excellent agreement with earlier data obtained here and by other
sources® 7, The maximum scatter of the comparative rod points was about 5

percent,

Figure 8 shows data for thermocouple grade constantan obtained on the
comparative rod apparatus using Armco iron references, and on Southern
Research Institute's high temperature radial inflow apparatus. Note the
excellent agreement. These data also show close agreement with data
obtained by Silverman® on an alloy of very similar composition.

ASD-TDR-62-765, "The Thermal Properties of Twenty-Six Solid Materials
to 5000 °F or Their Destruction Temperatures", Southern Research Institute,
August, 1962 _

*pears, C. D., Proceedings of Third Conference on Thermal Conductivity,
453-479 (1963)

’NSRDS-NBS 16, "Thermal Conductivity of Selected Materials", Part 2,
by C. Y. Ho, R. W. Powell and P. E. Liley, National Bureau of Standards, 1968
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APPENDIX B

INJECTOR ELEMENT SPLASH TEST RESULTS
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Baseline Element — Mod A
Momentum Ratio = 1.09
Wox = 0.4057

Wi = 0.0381

Baseline Element — Mod A
Momentum Ratio = 1.92

Wox = 05137
Wt = 0.0346

Baseline Element — Mod A
Momentum Ratio = 2.82
Wox = 0.5915

Wt = 0.0313

Baseline Element ~ Mod A
Momentum Ratio = 3.52
Wox = 0.6212

Wi =0.0278

ORIGINAL PAGE
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Center Element ~ Mod B
Momentum Ratio = 1.08
Wox = 0.4009

Wf = 0.0375

J J

Center Element — Mod B
Momentum Ratio = 1.92
Wox = 0.5142

Wf = 0.0342

Center Element — Mod B
Momentum Ratio = 2.85
Wox = 0.5830

Wf = 0.0310

Center Element — Mod B
Momentum Ratio = 3.55
Wox = 0.6207

Wt =0.0274
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Center Element — Mod C
Momentum Ratio =1.08
Wox = 0.4029

Wi = 0.0378

Center Element — Mod C
Momentum Ratio = 1.91
Wox = 0.5119

Wi = 0.0343

Center Element — Mod C
Momentum Ratio = 2.80
Wox = 0.5859
Wif = 0.0309

A

Center Element — Mod C
Momentum Ratio = 3.55
Wox = 0.6208

Wf = 0.0275

DRIGINAL PAGE
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Center Element — Mod D
Momentum Ratio = 1.08
Wox = 0.4009

Wf = 0.0375

i

Center Element — Mod D
Momentum Ratio = 1.95
Wox = 0.5163

Wi = 0.0342

Center Element — Mod D
Momentum Ration = 2.82
Wox = 0.5877
Wit = 0.0309

Center Element — Mod D
Momentum Ratio = 3.53
Wox = 0.6219

Wi = 0.0277
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Center Element - Mod E
Momentum Ratio = 1.08
Wox = 0.4011

Wi = 0.0376

Center Element — Mod E
Momentum Ratio = 1.92
Wox = 0.5134

Wi = 0.0342

Center Element — Mod E
Momentum Ratio = 2.87
Wox = 0.5933

Wi = 0.0308

2 gl

Center Element - Mod E
Momentum Ratio = 3.65
Wox = 0.6262

wWf = 0.0273

ORIGINAL PAGE
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Baffle Element — Mod F
Momentum Ratio = 1.07
Wox = 0.3997

Wf = 0.0377

Baffle Element — Mod F
Momentum Ratio = 1.93
Wox = 05139

Wi = 0.0342

Baffle Element — Mod F
Momentum Ratio = 2.75
Wox = 0.5805

Wi = 0.0309

Baffle Element - Mod F
Momentum Ratio = 3.59

Wox = 0.6240
Wf = 0.0274
GRIGINET 10
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Baffle Element - Mod G
Momentum Ratio = 1.07
Wox = 0.4004

Wt = 0.0374

J arf;_ .

Baffle Element — Mod G
Momentum Ratio = 1.92
Wox = 0.5123

Wt = 0.0341

Baffle Element — Mod G
Momentum Ratio = 2.76

Wox = 0.5824
Wf = 0.0310

B g gERY

Baffle Element — Mod G
Momentum Ratio = 3.60
Wox = 0.6272

Wi =0.0277

ORIGINAL PACT
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Baffle Element - Mod H
Momentum Ratio = 1.08
Wox = 0.4018

Wi =0.0379

F 5

Baffle Element — Mod H
Momentum Ratio = 1.89
Wox = 0.5103

Wt = 0.0346

Baffle Element — Mod H
Momentum Ratio = 2.79
Wox = (0.5863

Wf = 0.0311

Baffle Element — Mod H
Momentum Ratio = 3.50
Wox = 0.6183

Wt =0.0277

R T
Y
;
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Bafile Element — Mod |
Momentum Ratio = 1.10
Wox = 0.4065

Wi = 0.0382

Baffle Element — Mod |
Momentum Ratio = 1.92
Wox = 0.5138

Wf = 0.0349

Baffle Element — Mod |
Momentum Ratio = 2.77
Wox = 0.5856

wWif = 0.0314

Baffle Element — Mod |
Momentum Ratio = 3.59
Wox = 0.6261

wif = 0.0280
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"APPENDIX C

COMPUTER MODELS USED IN DATA REDUCTION FOR MILKMAID TEST
RESULTS
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Cc

PROGRAM SUGAR

C kkhkdhhhkhkhhkhkhhkkAhk

C CONVERTS LIQUID HEIGHTS IN CM TO CC FOR NEW ATC MILKMAID
C hkkhkkhkhkkkhkhhhhhd

c

c PROGRAM TO CONVERT MILK MAID VOLUME/ REFRACTIVE INDEX
(SUGAR

c WEIGHT PERCENT) DATA INTO FUEL/OX MASS FLOW FOR USE BY
FDOO73 AND LICOR

c

c INPUT UNITS:

c

c NAMELIST $PARAM:

c

c TCOL: COLLECTION TIME, SEC.

c RINDXO: UNDILUTED SUCROSE SOLUTION REFRACTIVE INDEX
c CONCO: UNDILUTED SUCROSE SOLUTION WEIGHT PERCENT
c NROW: NUMBER OF ROWS IN GRID

c NCOL: NUMBER OF COLUMNS IN GRID

c ACEL: CROSS-SECTIONAL AREA OF COLLECTOR CELL,
sQ. IN.

c IFLAG: INPUT FLAG; =0 FOR REFRACTIVE INDEX
(DEFAULT)

c =1 FOR WEIGHT PERCENT

c ISUC: SUCROSE CIRCUIT; =0 FOR OXIDIZER (DEFAULT)
C =1 FOR FUEL

c

c REPEATED CELL DATA (FREE FORMAT):

c

C I: DATA ROW INDEX

c J: DATA COLUMN INDEX

c VOL: COLLECTED VOLUME (ACTUALLY MEASURED
HEIGHT), CM.

c RINDEX: REFRACTIVE INDEX

c OR

c CONCI: SUCROSE WEIGHT PERCENT

c

c

WO (NROWM, NCOLM) ,
*

NCOL,

Cc
C
Cc

PARAMETER (NCONC=69, NROWM=50, NCOLM=50)
CHARACTER INFILE*80, OUTFILE*80, TITLE*80
DIMENSION CONC (NCONC), RI(NCONC), DENS(NCONC),

WF (NROWM, NCOLM) _
DATA WO, WF, DENSW, RINDXO, CONCO, IFLAG, ISUC
* /5000%0.0, 1.0, 2%0.0, 2%0/

NAMELIST /PARAM/ TCOL, RINDXO, CONCO, ACEL, NROW,
IFLAG,
* 1SUC

REFRACTIVE INDEX

DATA RI /1.3344, 1.3351, 1.3359, 1.3367, 1.3374,

1.3381, 1.3388,

C-2



* 1.3395, 1.3403, 1.3411, 1.3418, 1.3425,
1.3433, 1.3411,
* 1.3448, 1.3456, 1.3464, 1.3471, 1.3479,
1.3487, 1.3494,
* 1.3502, 1.3510, 1.3518, 1.3526, 1.3533,
1.3541, 1.3549,
* 1.3557, 1.3565, 1.3573, 1.3582, 1.3590,
1.3598, 1.3606,
* 1.3614, 1.3622, 1.3631, 1.3639, 1.3647,
1.3655, 1.3663,
* 1.3672, 1.3681, 1.3689, 1.3698, 1.3706,
1.3715, 1.3723,
* 1.3731, 1.3740, 1.3749, 1.3758, 1.3767,
1.3775, 1.3784,
* 1.3793, 1.3802, 1.3811, 1.3820, 1.3829,
1.3838, 1.3847,
* 1.3856, 1.3865, 1.3874, 1.3883, 1.3893,

1.3902/
c
c SUCROSE WEIGHT % DATA (GM SUGAR/100 GM SOLUTION)
c (1-35 WEIGHT % AT 25 DEGREES C)
c REF: CRC HANDBOOK OF CHEMISTRY AND PHYSICS 59TH ED.
PAGE E-358
c

DATA CONC /1.334, 1.836, 2.338, 2.840, 3.342, 3.844,
4.346,

* 4.848, 5.350, 5.851, 6.352, 6.853, 7.354,
7.855,

* 8.356, 8.857, 9.358, 9.859, 10.360, 10.861,
11.362,

* 11.863, 12.364, 12.865, 13.366, 13.867,

14.368, 14.869,
* 15.370, 15.871, 16.372, 16.873, 17.374,
17.875, 18.376,
* 18.877, 19.378, 19.879, 20.380, 20.880,
21.380, 21.880,
* 22.380, 22.880, 23.380, 23.880, 24.380,
24.880, 25.380,
* 25.881, 26.382, 26.883, 27.384, 27.885,
28.386, 28.887,
* 29.388, 29.889, 30.390, 30.891, 31.392,
31.893, 32.394,
* 32.895, 33.396, 33.897, 34.398, 34.899,

35.400/

c

c SUCROSE SOLUTION DENSITY DATA (GM/ML SOLUTION)

c (1-35 WEIGHT % AT 20 DEGREES C)

c REF: CRC HANDBOOK OF CHEMISTRY AND PHYSICS 59TH ED.
PAGE D-308

c

DATA DENS /1.0021, 1.0040, 1.0060, 1.0079, 1.0099,
1.0119, 1.0139, '
* 1.0158, 1.0178, 1.0198, 1.0218, 1.0238,
l1.0259, 1.0279,



* 1.0299, 1.0320, 1.0340, 1.0361, 1.0381,
1.0402, 1.0423, :

* 1.0444, 1.0465, 1.0486, 1.0507, 1.0528,
1.0549, 1.0571,

* 1.0592, 1.0614, 1.0635, 1.0657, 1.0678,
1.0700, 1.0722,

* 1.0744, 1.0766, 1.0788, 1.0810, 1.0833,
1.0855, 1.0877,

* 1.0899, 1.0922, 1.0945, 1.0972, 1.0990,
1.1013, 1.1036,

* 1.1059, 1.1082, 1.1105, 1.1129, 1.1152,
1.1175, 1.1199,

* 1.1223, 1.1247, 1.1270, 1.1294, 1.1318,
1.1342, 1.1366,

* 1.1391, 1.1415, 1.1440, 1.1464, 1.1489,
1.1513/
c
c FORMAT STATEMENTS
c

10 FORMAT (1X,'INPUT FILE NAME ?')

11 FORMAT(A)

12 FORMAT (1X, 'OUTPUT FILE NAME ?')

13 FORMAT(/1X,A,//10X, 'COLLECTION TIME=',F7.3,' SEC.',5X,
* 'OXIDIZER SUGAR WEIGHT PERCENT=',6F7.3,'%',6/10X,

* 'GRID CONTAINS ',I2,' ROWS AND ',I2,' COLUMNS')
15 FORMAT (10X, 'OXIDIZER DENSITY=',6F7.4,' GM/ML',//)
20 FORMAT (/1X,'*** WARNING ***', /1X,'OXIDIZER SUGAR
WEIGHT PERCENT ',

* 'IS GREATER THAN LARGEST VALUE IN TABLE,'

* /1%, 'LARGEST WEIGHT PERCENT IS ',6F7.3,' AND
VALUES WILL ',

* 'BE LINEARLY EXTRAPOLATED.')

30 FORMAT(/1X, 'REFRACTIVE INDEX GREATER THAN LARGEST
VALUE IN TABLE',
* /1X,' VALUE LINEARLY EXTRAPOLATED.')
31 FORMAT(/1X, 'WEIGHT PERCENT GREATER THAN LARGEST VALUE
IN TABLE',
* /1X,' VALUE LINEARLY EXTRAPOLATED. ')
40 FORMAT(//5X,'ROW=',6I2,5X,'COLUMN=',I2,/5X, 'REFRACTIVE

INDEX="',

* F7.4,5X, '"WEIGHT PERCENT
SUGAR="',F7.4,/5X, 'VOLUME % OX=',
* F7.2,5X, 'VOLUME % FUEL=',F7.2,/5X,'0X MASS
FLUX, LBm/S=', ,
* 1PE10.3,5X, 'FUEL MASS FLUX, LBm/S=',E10.3)
41 FORMAT(//5X,'ROW=',6I2,5X,'COLUMN=',I2,/5X,
* 'WEIGHT PERCENT SUGAR=',F7.4,/5X,'VOLUME %
oX="',
* F7.2,5X,'VOLUME % FUEL=',F7.2,/5X,'OX MASS
FLUX, LBm/S=',
* 1PE10.3,5X, 'FUEL MASS FLUX, LBm/S=',E10.3)
50 FORMAT(//10X,'FD0073/LICOR FLOWRATE INPUT DATA',//)
C .
c READ INPUT AND OUTPUT FILE NAMES
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WRITE (8,30)
N=NCONG-1
250 CONTINUE
CONCI=CONC(N) + (CONC(N+1)=-CONC(N))* (RINDEX-
RI(N)l/

(RI (N+1)-RI(N))
GOTO 400
ELSE
CONCI=RINDEX
DO 300 N=1, (NCONC-1)
IF (CONCI .LE. CONC(N)) GOTO 350
300 CONTINUE
WRITE(8,31)
N=NCONC-1
350 CONTINUE
END IF
400 DENSI=DENS (N) + (DENS(N+1)-DENS(N))*(CONCI-
CONC(N) )/
* (CONC (N+1) =CONC (N))

c
c 15.518 CONVERTS HEIGHT INTO VOLUME (CC'S) FOR ATC
MILKMAID
c
VOL=VOL*15.518
VO=(CONCI*DENSI)/ (CONCO*DENSO0) *VOL
VF=VOL-VO
c
c CALCULATE VOLUME PERCENTS
c
PO=100.0*V0O/VOL
PF=100.0-PO
c
c CALCULATE MASS FLUX IN LBm/SEC
c
WO(I,J)=0.0022046226*DENSO*VO/TCOL
WF(I,J)=0.0022046226*DENSW*VF/TCOL
IF (ISUC .EQ. 1) THEN
WFT=WO(I,J)
PFT=PO
WO(I,J)=WF(I,J)
PO=PF
WF (I,J)=WFT
PF=PFT
END IF
c
c PRINT OUT DATA
c

IF (IFLAG .EQ. 0) THEN
WRITE(8,40) I, J, RINDEX, CONCI, PO, PF,
WO(I,J), WF(I,J)
GOTO 500
ELSE
WRITE(8,41) I, J, CONCI, PO, PF, WO(I,J),
WF(I,J)



OO0 OO0

Q00

(e NP NP

100

150

175

185

190

200

WRITE(6,10)

READ(5,11) INFILE

OPEN (UNIT=7, FILE=INFILE, STATUS='OLD', ERR=9000)
WRITE (6,12)

READ(5,11) OUTFILE

OPEN (UNIT=8, FILE=OUTFILE, STATUS='NEW')

READ TITLE AND NAMELIST $PARAM

READ(7,11) TITLE
READ (7, PARAM, ERR=9100)

CHECK DATA LIMITS

IF (NROW .GT. NROWM) GOTO 9200
IF (NCOL .GT. NCOLM) GOTO 9300
IF (TCOL .LE. 0.0) GOTO 9400

CALCULATE OXIDIZER WEIGHT PERCENT AND DENSITY

IF (RINDXO .LE. 0.0 .AND. CONCO .GT. 0.0) GOTO 175

IF (RINDXO .LE. 0.0) GOTO 9500

DO 100 N=1, (NCONC-1)

IF (RINDXO .LE. RI(N)) GOTO 150

CONTINUE

WRITE(8,30)

N=NCONC-1

CONTINUE

CONCO=CONC (N) + (CONC(N+1)-CONC(N))* (RINDXO-RI(N))/
(RI (N+1)-RI(N))

IF (CONCO .GT. CONC(NCONC)) WRITE(8,20) CONC(NCONC)

GOTO 190

CONTINUE

IF (CONCO .GT. CONC(NCONC)) WRITE(8,20) CONC(NCONC)

DO 185 N=1, (NCONC-1)

IF (CONCO .LE. CONC(N)) GOTO 190

CONTINUE

N=NCONC-1

CONTINUE

DENSO=DENS (N) + (DENS (N+1)-DENS (N))* (CONCO-CONC(N))/
(CONC (N+1) =CONC (N) )

WRITE(8,13) TITLE, TCOL, CONCO, NROW, NCOL

WRITE(8,15) DENSO

READ IN DATA POINTS AND CONVERT

MAXIT=NROWM*NCOLM
DO 500 ICOUNT=1,MAXIT
READ(7,*,END=510,ERR=9600) I, J, VOL, RINDEX
IF (IFLAG .EQ. 0) THEN
DO 200 N=1, (NCONC-1)
IF (RINDEX .LE. RI(N)) GOTO 250
CONTINUE



END IF

500 CONTINUE
c
c OUTPUT DATA IN FD0O073 AND LICOR FORMAT
c
510 CONTINUE
WRITE(8,50)
DO 600 I=1,NROW
DO 600 J=1,NCOL
WRITE(8,*) WO(I,J), WF(I,J)
600 CONTINUE
c
o STOP PROGRAM
c
1000 CLOSE(7)
CLOSE(8)
STOP
c
c ERROR CONTIDIONS
c
9000 WRITE(6,*) 'INPUT FILE NOT FOUND, RUN ABORTED'
STOP
9100 WRITE(8,*) 'ERROR READING NAMELIST $PARAM, RUN
STOPPED'
GOTO 1000
9200 WRITE(8,*) 'NROW LARGER THAN PROGRAM LIMIT OF ', NROWM,
* ' RUN STOPPED'
GOTO 1000
9300 WRITE(8,*) 'NCOL LARGER THAN PROGRAM LIMIT OF ',NCOLM,
* ' RUN STOPPED'
GOTO 1000
9400 WRITE(8,*) 'COLLECTION TIME, TCOL, .LE. 0, RUN
STOPPED'
GOTO 1000
9500 WRITE(8,*) 'INITIAL OXIDIZER WEIGHT PERCENT, CONCO,
AND INITIAL !,
'"REFRACTIVE INDEX, RINDXO .LE. 0; RUN
STOPPED'
GOTO 1000
9600 WRITE(8,*) 'ROW/COLUMN DATA READ ERROR, RUN STOPPED'

GOTO 1000
END
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NOOQOONO0O0O0O0ON0NO0OOOOOO000O0N0O0NN0N0NN0O00O0000O00O0000O00O00O00O0O0O0O00

PROGRAM PC73
PC VERSION OF FD0073; CONTOURING DONE WITH GOLDEN GRAPHICS SURFER

WRITTEN BY: J. MUSS DATE: 7/7/87

AR R AR AR AR R AN AR AR AR R AR R R RN AR R R R AR R A AR A AR AR R AR A AR AR A h bk ks

#kk*%%% Program to analyze injector flow collector data ###aikdkin
*t*t*********t***itt****ii*t**t******t**t**ti*titt***t****t*******

D. FEFERMAN 4/87 ~CONVERT TO VAX FROM UNIVAC
J. MUSS 5/6/87 - MODIFIED PROGRAM CONTROL, INPUT AND OUTPUT

OUTPUT DATA

oxidizer mass flow distribution

Fuel mass distribution

Total mass distribution

Mixture ratio distribution

Combustion gas temperature distribution
Mixture ratio maldistribution ISP loss
Theoretical ISP performance

Theoretical CSTAR performance

Injector mixing efficiency

INPUT FORMAT
Test series identification and date (A80)

Injector identification (A80)
Propellant combination name for performance data (A80)

NAMELIST $DATAIN

XCOL = Collector head size, (in.)
III = Number of X-direction collection tubes, maximum = 28
JJIJ = Number of Y-direction collection tubes, maximum = 28
WOT” = Oxidizer simulant flowrate, (lbm/sec)
WFT = Fuel simulant flowrate, (lbm/sec)
RHOO = Oxidizer simulant density, (lbm/cu.ft.)
RHOF = Fuel simulant density, (lbm/cu.ft.)
AOT = Total EFFECTIVE oxidizer orifice area (INCLUDE CD), (sqg.in.)
AFT = Total EFFECTIVE fuel orifice area (INCLUDE CD), (sg.in.)
ITOTAL = Normalize collected flows by total flows;
0=NO (default)/ 1=YES
IFLAG = MRD loss is calculated; 0=NO (default)/ 1=YES
CFLAG = CSTAR loss is calculated; 0=NO (default)/ 1=YES
TFLAG = Temperature distribution is calculated; O0=NO (default)/ 1=YES
EFLAG = Injector mixing is calculated; 0=NO (default)/ 1=YES
ITAB = No. of MRI, ISPI, CSTARI, and TCI values input (MAX=50)
MRI(1) = Mixture ratios at which theoretical performance and
temperature data are evaluated, ITAB inputs required
ISPI(1) = Theoretical specific impulse at the corresponding

MRI values, ITAB inputs required, (lbf/lbm/sec)
CSTARI(1)= Theoretical CSTAR at corresponding MRI values,
ITAB inputs required, (ft/sec)
TCI(1) = Theoretical combustion temperature at corresponding
MRI values, ITAB inputs required, (R)

Collected TOTAL MASS data, III*JJJ ENTRIES REQUIRED. INPUT IS READ
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ROW-WISE, FROM COLUMN 1-JJJ AS:

DO 100 I=1,III
DO 100 J=1,J33J
READ(7,%) WO(I,J), WF(I,J)
100 CONTINUE

WO(I,J) = Collected oxidizer simulant mass flow, (lbm/s)
WF(I,J) = Collected fuel simulant mass flow, (lbm/s)

KRR AR AR AR A R AR AR AR R kR kAR R AR AN AR A Ak R AR R R AR N A AR R Ak hhk

PARAMETER (NAR=50, NTA=50)

IMPLICIT REAL*4 (A-H,0-Z)

INTEGER ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG

CHARACTER TITLE1%80, TITLE2+80, TITLE3*80

REAL ISPM,ISPT,ISPI,MR,MRI,MRO,MRMDL

COMMON /INPUT/ II,III,JJ,JJJ,XCOL,
WOT, WFT, WOTT, WFTT, RHOO, RHOF, AOT, AFT, VO, VF, WV, RN,
WO (NAR,NAR) ,WF (NAR, NAR) , MR (NAR, NAR) , TCL (NAR, NAR) ,
MRO, EC, CMRO, EFC, EOC, EM,
CSTARM, CSTARL, CSTART, ISPM, ISPT, MRMDL

COMMON /TABLES/ CSTARI(NTA),MRI(NTA),ISPI(NTA),TCI (NTA)

COMMON /FLAGS/ ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG

COMMON /TWO/ ITAB

* % %

DATA II, JJ / 2*1/
DATA ITAB, ISKIP, IFLAG, CFLAG, EFLAG, TFLAG, ITOTAL / 7%0 /

NAMELIST /DATAIN/ XCOL, III, JJJ, WOT, WFT, RHOO, RHOF, AOT, AFT,
* ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG, ITAB, CSTARI, MRI, ISPI, TcCI

10 FORMAT(A)
11 FORMAT(1X,A4,/1X,2I4,/1X,1PE10.3,2X,E10.3,/1X,E10.3,2X,E10.3,

100

* /1X,E10.3,2X,E10.3)
READ INPUT DATA

READ(7,10) TITLEl
READ(7,10) TITLE2
READ(7,10) TITLE3
READ(7,DATAIN,ERR=9100)
DO 100 I=1,IIT

DO 100 J=1,J3J

READ(7,*,ERR=9200) WO(I,J), WF(I,J)

CONTINUE

BEGIN CALCULATIONS

CALL MASS

IF (CFLAG .EQ. 1) CALL STAR
IF (IFLAG .EQ. 1) CALL MRL

IF (TFLAG .EQ. 1) CALL TEMP
IF (EFLAG .EQ. 1) CALL EMIX
CALL PRINT

BEGIN CONTOUR PLOTTING OUTPUT

ZERO=0.0
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YCOL=XCOL
WRITE(6,*%*) 'GRID AXES IN 1) INCHES OR 2) CELLS (1/2)?'
READ(5,*) IGRDA

IF (IGRDA .EQ. 2) XCOL=FLOAT (JJJ)

IF (IGRDA .EQ. 2) YCOL=FLOAT(III)

FUEL MASS FLOW CONTOURS

ZMAX=0.0
ZMIN=1.0E6
DO 200 I=II,III
DO 200 J=JJ,JJJ
ZMAX=MAX (ZMAX,WF(I,J))
ZMIN=MIN (ZMIN,WF(I,J))
CONTINUE
WRITE(9,11) 'DSAA',JJJ,III,2ERO,XCOL,ZERO,YCOL,ZMIN,ZMAX
DO 250 I=II,III
WRITE(9,*) (WF(I,J),J=33,33J)
WRITE(9, *)
CONTINUE

OXIDIZER MASS FLOW

ZMAX=0.0
ZMIN=1.0E6
DO 300 I=II,III
DO 300 J=JJ,J3J
ZMAX=MAX (ZMAX,WO(I,J))
ZMIN=MIN (ZMIN,WO(I,J))
CONTINUE
WRITE(10,11) 'DSAA',JJJ,III,ZERO,XCOL,ZERO,YCOL,2ZMIN, ZMAX
DO 350 I=II,III
WRITE(10,*) (WO(I,J),J=JJ,JJJ)
WRITE(10,*)
CONTINUE

TOTAL MASS FLOW

ZMAX=0.0
ZMIN=1.0E6
DO 400 I=II,III
DO 400 J=JJ,JJJ
ZMAX=MAX (ZMAX, (WF(I,J)+WO(I,J)))
ZMIN=MIN (ZMIN, (WF(I,J)+WO(I,J)))
CONTINUE
WRITE(11,11) 'DSAA',JJJ,III,ZERO,XCOL,ZERO,YCOL,ZMIN,ZMAX
DO 450 I=II,III
WRITE(11,*) ((WF(I,J)+WO(I,J)),J=JJ,JJJ)
WRITE(11,*)
CONTINUE

MIXTURE RATIO CONTOURS

ZMAX=0.0
ZMIN=1.0E6
DO 500 I=II,III
DO 500 J=JJ,JJJ
ZMAX=MAX (ZMAX,MR(I,J))
ZMIN=MIN (ZMIN,MR(I,J))
CONTINUE
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WRITE(12,11) 'DSAA',JJJ,III,ZERO,XCOL,ZERO,YCOL,ZMIN, ZMAX
DO 550 I=II,III

WRITE(12,*%) (MR(I,J),J=JJ,JJ3J)

WRITE(12,*)
CONTINUE

LOCAL TEMPERATURE PROFILE

IF (TFLAG .NE. 1) GOTO 1000
ZMAX=0.0
ZMIN=1.0E6
DO 600 I=II,III
DO 600 J=JJ,JJJ

ZMAX=MAX (ZMAX, TCL(I,J))

ZMIN=MIN (ZMIN,TCL(I,J))
CONTINUE
WRITE(13,11) 'DSAA',JJJ,III,ZERO,XCOL,ZERO,YCOL,ZMIN, ZMAX

DO 650 I=II,TII
WRITE(13,*) (TCL(I,J),JI=JJ,JJJ)
WRITE (13, %)

CONTINUE

END OF PROGRAM

STOP

ERROR MESSAGES

WRITE(6,*) 'ERROR IN NAMELIST $DATAIN, RUN STOPPED'

WRITE(8,*) 'ERROR IN NAMELIST $DATAIN, RUN STOPPED'
STOP

WRITE(6,*) 'ERROR READING FLOWS FOR CELL (',I,',',J,'), ',
' RUN STOPPED'

WRITE(8,*) 'ERROR READING FLOW FOR CELL (',I,',',J,'), °*,
' RUN STOPPED'

STOP

END

SUBROUTINE MASS
MODIFIED BY J. MUSS 5/6/87
PARAMETER (NAR=50, NTA=50)

IMPLICIT REAL*4 (A-H,0-2)
INTEGER ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG
REAL ISPM,ISPT,ISPI,MR,MRI,MRO,MRMDL
COMMON /INPUT/ II,III,JJ,3JJ,XCOL,
WOT, WFT, WOTT, WFTT, RHOO, RHOF , AOT, AFT, VO, VF, WV, RN,
WO (NAR, NAR) , WF (NAR, NAR) , MR (NAR, NAR) , TCL (NAR, NAR) ,
MRO, EC, CMRO, EFC, EOC, EM,
CSTARM, CSTARL, CSTART, ISPM, ISPT, MRMDL
COMMON /TABLES/ CSTARI (NTA),MRI(NTA),ISPI(NTA),TCI(NTA)

CALCULATE TOTAL OXIDIZER AND FUEL FLOW
WOTT=0.0
DO 100 I=II,III

DO 100 J=J33,3J3J
WOTT=WOTT+WO (I,J)
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WFTT=WFTT+WF (I,J)

100 CONTINUE

150

190

200

CALCULATE COLLECTED MR AND COLLECTION EFFICIENCY

CMRO=WOTT/WFTT
EFC=100.0*WFTT/WFT
EOC=100.0*WOTT/WOT

EC=100. * (WOTT+WFTT) / (WOT+WFT)

NORMALIZE COLLECTED BY NOMINAL FLOWRATE,

IF (ITOTAL .NE. 1) GOTO 190
FF=WFT/WFTT
XF=WOT/WOTT
WOTT=WOT
WFTT=WFT
DO 150 I=II,III
DO 150 J=JJ,JJ3J
WO (I,J)=XF*WO(I,J)
WF(1,J)=FF*WF(I,J)
CONTINUE

CALCULATE LOCAL MIXTURE RATIO

CONTINUE
DO 200 I=II,III
DO 200 J=JJ,JJ3J

MR(I,J)=99.99
IF ((WO(I,J)+WF(I,J)) .LE. 0.0) MR(I,J)=0.0
IF (WF(I,J) .LE. 0.0) GOTO 200
MR(I,J)=WO(I,J)/WF(I,J)

CONTINUE

CALCULATE OVERALL MIXTURE RATIO
MRO=WOTT/WFTT
CALCULATE OXIDIZER AND FUEL VELOCITY

VO=WOTT*144./RHOO/AOT
VF=WFTT*144./RHOF/AFT

CALCULATE MOMENTUM RATIO

WV=WOTT*VO/WFTT/VF

CALCULATE RUPE NUMBER

RN=1.0/(1.0+ (RHOO/RHOF* (VO/VF) **2.*SQRT (AOT/AFT) ) )
RETURN

END

SUBROUTINE STAR
PARAMETER (NAR=50, NTA=50)

IMPLICIT REAL*4 (A-H,0-2)

INTEGER ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG
REAL ISPM,ISPT,ISPI,MR,MRI,MRO,MRMDL
COMMON /INPUT/ II,III,JJ,J3J,XCOL,
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WOT,WFT, WOTT, WFTT, RHOO, RHOF, AOT, AFT, VO, VF,WV,RN,

WO (NAR, NAR) ,WF (NAR, NAR) , MR (NAR,NAR) , TCL(NAR, NAR) ,

MRO, EC, CMRO, EFC, EOC, EM,

CSTARM, CSTARL, CSTART, ISPM, ISPT, MRMDL
COMMON /TABLES/ CSTARI (NTA),MRI(NTA),ISPI(NTA),TCI(NTA)
COMMON /TWO/ ITAB

CALCULATE MASS AVERAGE CSTAR

WDOT=WOTT+WFTT
CSTARM=0. 0
DO 100 I=II,IIT

DO 100 J=JJ,JJJ

CSTAR = AINTP(MR(I,J),MRI,CSTARI,ITAB)

IF (CSTAR .LT. 0.0) CSTAR=0.0

CSTARM = CSTARM+CSTAR* (WF(I,J)+WO(I,J))/WDOT
CONTINUE

CALCULATE OVERALL THEORETICAL CSTAR
CSTART = AINTP(MRO,MRI,CSTARI,ITAB)
CALCULATE CSTAR LOSS

CSTARL = (1.0-CSTARM/CSTART)*100,.
RETURN

END

SUBROUTINE MRL
PARAMETER (NAR=S50, NTA=50)

IMPLICIT REAL*4 (A-H,0-2)

INTEGER ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG
REAL ISPM,ISPT,ISPI,MR,MRI,MRO,MRMDL
COMMON /INPUT/ II,III,JJ,JJJ,XCOL,

WOT,WFT, WOTT, WFTT, RHOO,RHOF, AOT, AFT,VO,VF,WV,RN,
WO (NAR, NAR) ,WF (NAR,NAR) ,MR(NAR,NAR) , TCL(NAR, NAR) ,

MRO, EC, CMRO, EFC, EOC, EN,

CSTARM, CSTARL, CSTART, ISPM, ISPT, MRMDL
COMMON /TABLES/ CSTARI (NTA),MRI(NTA),ISPI(NTA),TCI(NTA)
COMMON /TWO/ ITAB

CALCULATE MASS AVERAGED ISP

WDOT=WFTT+WOTT
ISPM=0.0
DO 100 J=3J,J33J
DO 100 I=II,III

ISP= AINTP(MR(I,J),MRI,ISPI,ITAB)

IF (ISP .LT. 0.0) ISP=0.0

ISPM=ISPM+ISP* (WF(I,J)+WO(I,J))/WDOT
CONTINUE

CALCULATE OVERALL THEORETICAL ISP
ISPT = AINTP(MRO,MRI,ISPI,ITAB)
CALCULATE MR MALDISTRIBUTION LOSS

MRMDL = (1.0-ISPM/ISPT)#100.
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RETURN
END

SUBROUTINE TEMP
PARAMETER (NAR=50, NTA=50)

IMPLICIT REAL*4 (A-H,0-2)

INTEGER ITOTAL, CFLAG, IFLAG, EFLAG, TFLAG

REAL ISPM,ISPT,ISPI,MR,MRI,MRO,MRMDL

COMMON /INPUT/ II,III,JJ,JJJ,XCOL,
WOT, WFT, WOTT, WFTT , RHOO , RHOF, AOT, AFT, VO, VF, WV, RN,
WO (NAR, NAR) , WF (NAR, NAR) , MR (NAR, NAR) , TCL (NAR, NAR) ,
MRO, EC, CMRO, EFC, EOC, EM,
CSTARM, CSTARL, CSTART, ISPM, ISPT, MRMDL

COMMON /TABLES/ CSTARI (NTA),MRI(NTA),ISPI(NTA),TCI (NTA)

COMMON /TWO/ ITAB

CALCUTATE TOCAIL. TEMPERATIIRE S




